

Lecture Notes in Computer Science 4867
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Sehun Kim Moti Yung
Hyung-Woo Lee (Eds.)

Information
Security Applications

8th International Workshop, WISA 2007
Jeju Island, Korea, August 27-29, 2007
Revised Selected Papers

13

Volume Editors

Sehun Kim
KAIST, Department of Industrial Engineering
373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea
E-mail: shkim@kaist.ac.kr

Moti Yung
Google Inc.
Columbia University, Computer Science Department
RSA Laboratories
S.W.Mudd Building, New York, NY10027, USA
E-mail: moti@cs.columbia.edu

Hyung-Woo Lee
Hanshin University
School of Computer Engineering
411, Yangsan-dong, Osan, Gyunggi, 447-791, Korea
E-mail: hwlee@hs.ac.kr

Library of Congress Control Number: 2007942182

CR Subject Classification (1998): E.3, D.4.6, F.2.1, C.2, J.1, C.3, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-77534-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77534-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12210664 06/3180 5 4 3 2 1 0

Preface

The 8th International Workshop on Information Security Applications (WISA
2007) was held on Jeju Island, Korea during August 27–29, 2007. The workshop
was sponsored by the Korea Institute of Information Security and Cryptology
(KIISC), the Electronics and Telecommunications Research Institute (ETRI)
and the Ministry of Information and Communication (MIC).

WISA aims at providing a forum for professionals from academia and industry
to present their work and to exchange ideas. The workshop covers all technical
aspects of security applications, including cryptographic and non-cryptographic
techniques.

We were very pleased and honored to serve as the Program Committee
Co-chairs of WISA 2007. The Program Committee received 95 papers from 20
countries, and accepted 27 papers for the full presentation track. The papers
were selected after an extensive and careful refereeing process in which each
paper was reviewed by at least three members of the Program Committee.

In addition to the contributed papers, the workshop had three special talks.
Moti Yung gave a tutorial talk, entitled “Somebody You Know: The Fourth
Factor of Authentication.” Kihong Park and Nasir Memon gave invited talks,
entitled “Reactive Zero-Day Attack Protection” and “Securing Biometric Tem-
plates,” respectively.

Many people deserve our gratitude for their generous contributions to the
success of the workshop. We would like to thank all the people involved in the
technical program and in organizing the workshop. We are very grateful to the
Program Committee members and the external referees for their time and efforts
in reviewing the submissions and selecting the accepted papers. We also express
our special thanks to the Organizing Committee members for their hard work
in organizing the workshop.

Last but not least, on behalf of all those involved in organizing the workshop,
we would like to thank all the authors who submitted papers to this workshop.
Without their submissions and support, WISA could not have been a success.

December 2007 Sehun Kim
Moti Yung

Hyung-Woo Lee

Organization

Advisory Committee

Man-Young Rhee Kyung Hee University, Korea
Hideki Imai Tokyo University, Japan
Mun Kee Choi ETRI, Korea
Bart Preneel Katholieke Universiteit Leuven, Belgium
Kil-Hyun Nam Korea National Defense University, Korea
Sang-Jae Moon Kyungpook National University, Korea
Dong-Ho Won Sungkyunkwan University, Korea
Pil-Joong Lee POSTECH, Korea
Dae-Ho Kim NSRI, Korea
Joo-Seok Song Yonsei University, Korea

General Co-chairs

Min Surp Rhee Dankook University, Korea
Sung-Won Sohn ETRI, Korea

Steering Committee

Kyo-Il Chung ETRI, Korea
TaeKyoung Kwon Sejong University, Korea
Im-Yeong Lee Soonchunhyang University, Korea
Dong-Il Seo ETRI, Korea
OkYeon Yi Kookmin University, Korea
Jae-Kwang Lee Hannam University, Korea

Organizing Committee

Chair Sang Choon Kim Kangwon National University, Korea
Finance Taenam Cho Woosuk University, Korea
Publication Ji-Young Lim Korean Bible University, Korea
Publicity Gang Shin Lee KISA, Korea

Heuisu Ryu Gyeongin National University of
Education, Korea

Registration Yoonjeong Kim Seoul Women’s University, Korea
Treasurer Jaehoon Nah ETRI, Korea
Local Arrangements Khi Jung Ahn Cheju National University, Korea

Dohoon Lee NSRI, Korea

VIII Organization

Program Committee

Co-chairs
Sehun Kim KAIST, Korea
Moti Yung Columbia University, USA
Hyung-Woo Lee Hanshin University, Korea

Members
Gildas Avoine MIT, CSAIL, USA
Lejla Batina University of Leuven, Belgium
Mike Burmester Florida State University, USA
Ki-Joon Chae Ewha University, Korea
Myeonggil Choi Inje University, Korea
Bruno Crispo University of Trento, Italy
Sven Dietrich CERT, CMU, USA
Helena Handschu Spansion, France
Heng Swee Huay Multimedia University, Malaysia
Maria Isabel Gonzalez Vasco Universidad Rey Juan Carlos, Spain
Kil-Hyun Jeong Jangan College, Korea
Gildas Avoine MIT, CSAIL, USA
Soon-Won Jung NITGEN, Korea
Stefan Katzenbeisser Philips Research, Netherlands
Seungjoo Kim Sungkyunkwan University, Korea
Seokwoo Kim Hansei University, Korea
Brian King Indiana University at Purdue, USA
Hong Seung Ko Kyoto College of Graduate Studies for

Informatics, Japan
Dong Hoon Lee CIST, Korea University, Korea
Pil Joong Lee POSTECH, Korea
Chae-Hun Lim Sejong University, Korea
Dongdai Lin SKLIS, Chinese Academy of Sciences, China
Mose Liskov William and Mary College, USA
Michael Locasto Columbia, USA
Havier Lopez University of Malaga, Spain
Masahiro Mambo Tsukuba, Japan
Jung Chan Na ETRI, Korea
Shozo Naito Kyoto College of Graduate Studies for

Informatics, Japan
Yoram Ofek University of Trento, Italy
Heekuck Oh Hanyang University, Korea
Susan Pancho-Festin University of the Philippines, Phillipines
In-Jae Park Dream Security, Korea
Duong Hieu Phan, University College London, UK
Raphael C.-W. Phan EPFL, Switzerland
Vassilis Prevelakis Drexel University, USA

Organization IX

C. Pandu Rangan IIT Madras, India
Kyung-Hyune Rhee Pukyong National University, Korea
Pankaj Rohatgi IBM Resaerch, USA
Ahmad-Reza Sadeghi Ruhr University, Bochum, Germany
Kouichi Sakurai Kyushu University, Japan
Radu Sion SUNY, Stony Brook, USA
Ki-Wook Sohn NSRI, Korea
Francois-Xavier Standaert Louvaine University, Belgium
Yannis Stamatiou University of Ioannina, Greece
Koutarou Suzuki NTT Labs, Japan
Huaxiong Wang Nanyang Technological University, Singapore
Duncan Wong City University, Hong Kong
Heung-Youl Youm Soonchunhyang University, Korea
Rui Zhang AIST, Japan
Jianying Zhou Inst. for Infocomm Research, Singapore

Table of Contents

Public Key Crypto Applications

Universal ηT Pairing Algorithm over Arbitrary Extension Degree 1
Masaaki Shirase, Yuto Kawahara, Tsuyoshi Takagi, and
Eiji Okamoto

Convertible Undeniable Proxy Signatures: Security Models and Efficient
Construction . 16

Wei Wu, Yi Mu, Willy Susilo, and Xinyi Huang

Secret Signatures: How to Achieve Business Privacy Efficiently? 30
Byoungcheon Lee, Kim-Kwang Raymond Choo, Jeongmo Yang, and
Seungjae Yoo

Biometrics/Information Hiding

Implementation of BioAPI Conformance Test Suite Using BSP Testing
Model . 48

Jihyeon Jang, Stephen J. Elliott, and Hakil Kim

Information Hiding in Software with Mixed Boolean-Arithmetic
Transforms . 61

Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson

Geometrically Invariant Image Watermarking in the DWT Domain 76
Shijun Xiang and Hyoung-Joong Kim

Secure Hardware

Implementation of LSM-Based RBAC Module for Embedded System . . . 91
Jae-Deok Lim, Sung-Kyong Un, Jeong-Nyeo Kim, and
ChoelHoon Lee

Iteration Bound Analysis and Throughput Optimum Architecture of
SHA-256 (384, 512) for Hardware Implementations 102

Yong Ki Lee, Herwin Chan, and Ingrid Verbauwhede

A Compact Architecture for Montgomery Elliptic Curve Scalar
Multiplication Processor . 115

Yong Ki Lee and Ingrid Verbauwhede

XII Table of Contents

Secure Systems

Windows Vault: Prevention of Virus Infection and Secret Leakage with
Secure OS and Virtual Machine . 128

Yoshiki Sameshima, Hideaki Saisho, Tsutomu Matsumoto, and
Norihisa Komoda

An Architecture Providing Virtualization-Based Protection Mechanisms
Against Insider Attacks . 142

Frederic Stumpf, Patrick Röder, and Claudia Eckert

Detecting Motifs in System Call Sequences . 157
William O. Wilson, Jan Feyereisl, and Uwe Aickelin

Wireless and Mobile Security

Comparative Studies in Key Disagreement Correction Process on
Wireless Key Agreement System . 173

Toru Hashimoto, Takashi Itoh, Masazumi Ueba, Hisato Iwai,
Hideichi Sasaoka, Kazukuni Kobara, and Hideki Imai

Breaking 104 Bit WEP in Less Than 60 Seconds . 188
Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin

Efficient Implementation of the Pairing on Mobilephones Using
BREW . 203

Motoi Yoshitomi, Tsuyoshi Takagi, Shinsaku Kiyomoto, and
Toshiaki Tanaka

Application Security/Secure Systems

Security Analysis of MISTY1 . 215
Hidema Tanaka, Yasuo Hatano, Nobuyuki Sugio, and
Toshinobu Kaneko

A Generic Method for Secure SBox Implementation 227
Emmanuel Prouff and Matthieu Rivain

On the Security of a Popular Web Submission and Review Software
(WSaR) for Cryptology Conferences . 245

Swee-Won Lo, Raphael C.-W. Phan, and Bok-Min Goi

Access Control/DB Security

Authorization Constraints Specification of RBAC . 266
Lilong Han, Qingtan Liu, and Zongkai Yang

Table of Contents XIII

Dynamic Access Control Research for Inter-operation in Multi-domain
Environment Based on Risk . 277

Zhuo Tang, Ruixuan Li, Zhengding Lu, and Zhumu Wen

A Compositional Multiple Policies Operating System Security Model . . . 291
Lei Xia, Wei Huang, and Hao Huang

Smart Cards/Secure Systems

Longer Randomly Blinded RSA Keys May Be Weaker Than Shorter
Ones . 303

Colin D. Walter

Differential Power Analysis of HMAC Based on SHA-2, and
Countermeasures . 317

Robert McEvoy, Michael Tunstall, Colin C. Murphy, and
William P. Marnane

Provably Secure Countermeasure Resistant to Several Types of Power
Attack for ECC . 333

JaeCheol Ha, JeaHoon Park, SangJae Moon, and SungMing Yen

Anonymity and P2P Security

Risk & Distortion Based K-Anonymity . 345
Shenkun Xu and Xiaojun Ye

Optimizing Quality Levels and Development Costs for Developing an
Integrated Information Security System . 359

Myeonggil Choi and Sangmun Shin

ICRep: An Incentive Compatible Reputation Mechanism for P2P
Systems . 371

Junsheng Chang, Huaimin Wang, Gang Yin, and Yangbin Tang

Author Index . 387

Universal ηT Pairing Algorithm over Arbitrary

Extension Degree

Masaaki Shirase1, Yuto Kawahara1, Tsuyoshi Takagi1, and Eiji Okamoto2

1 Future University-Hakodate, Japan
2 University of Tsukuba, Japan

Abstract. The ηT pairing on supersingular is one of the most efficient
algorithms for computing the bilinear pairing [3]. The ηT pairing defined
over finite field F3n has embedding degree 6, so that it is particularly
efficient for higher security with large extension degree n. Note that the
explicit algorithm over F3n in [3] is designed just for n ≡ 1 (mod 12),
and it is relatively complicated to construct an explicit algorithm for
n �≡ 1 (mod 12). It is better that we can select many n’s to implement
the ηT pairing, since n corresponds to security level of the ηT pairing.

In this paper we construct an explicit algorithm for computing the
ηT pairing with arbitrary extension degree n. However, the algorithm
should contain many branch conditions depending on n and the curve
parameters, that is undesirable for implementers of the ηT pairing. This
paper then proposes the universal ηT pairing (η̃T pairing), which satis-
fies the bilinearity of pairing (compatible with Tate pairing) without any
branches in the program, and is as efficient as the original one. Therefore
the proposed universal ηT pairing is suitable for the implementation of
various extension degrees n with higher security.

Keywords: Tate pairing, ηT pairing, Duursma-Lee algorithm, efficient
implementation.

1 Introduction

Recently, bilinear pairings defined on elliptic curves such as Tate pairing and the
ηT pairing have been attracted to make new cryptographic protocols, for exam-
ple, identity-based cryptosystem [5], short signature [7] and efficient broadcast
cryptosystem [6], come true.

A standard algorithm for computing the Tate pairing is Miller algorithm [12].
The computational cost of Miller algorithm is generally larger than that of RSA
or elliptic curve cryptosystems [2]. It is one of important research fields in cryp-
tography to improve the computational cost of pairings. Supersingular curves
with characteristic three has embedding degree 6, so that it is particularly ef-
ficient for higher security. Some efficient variations of Miller algorithm in base
three have been proposed for computing Tate pairing on supersingular ellip-
tic curves over characteristic three [2,10]. Duursma and Lee proposed a closed
form generated by divisor gR = 3(R) + (−3R) − 4(O) for a point R, which

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 M. Shirase et al.

can efficiently compute Tate pairing [8]. Barreto et. al. then proposed the ηT

pairing which can reduce the iteration number of the main loop of Duursma-
Lee algorithm [3]. The computational cost of the ηT pairing is about half of the
Duursma-Lee algorithm. The ηT pairing is currently one of the fastest algorithm
for computing the bilinear pairing. It is easy to convert between Tate pairing
and the ηT pairing (see [3] or [4] for details).

This paper focuses on the ηT pairing defined over finite field F3n . Extension
degree n of F3n has to satisfy the following conditions due to several attacks: n
is an odd prime number, l is a large prime number with l|(36n−1), where l is the
order of the subgroup of the elliptic curve used in pairing. The extension degrees
that satisfy these conditions are n = 97, 163, 167, 193, 239, 313, 353, On the
other hand the explicit algorithm for computing the ηT pairing in [3] deals only
with n ≡ 1 (mod 12). Therefore, the previous researches on the ηT pairing have
been implemented in the case of n ≡ 1 (mod 12) [3,4,14]. To our knowledge there
is no literature that proposes the ηT pairing over F3n for general extension degree
n.1 Note that we should modify it if we try to construct an explicit algorithm for
n �≡ 1 (mod 12), namely n = 163, 167, 239, 353, It is relatively complicated
to construct an explicit algorithm for n �≡ 1 (mod 12).

In this paper we present an explicit algorithm for arbitrary prime number n
with gcd(n, 6) = 1. The proposed explicit algorithm depends on the extension
degree n and the coefficients of the underlying curves, which is not suitable for
implementers of the ηT pairing. Therefore this paper proposes the universal ηT

pairing whose algorithm does not depend on n and whose computational cost
is same as the original ηT pairing. Moreover we present the explicit relationship
between Tate pairing and the universal ηT pairing, which make the universal ηT

pairing compatible with Tate pairing for arbitrary extension degree n.
The remainder of this paper is organized as follows: In Section 2 we explain

about the known properties of the ηT pairing. In Section 3 we describe the pro-
posed algorithms including an explicit algorithm for computing the ηT pairing
over arbitrary degree n and the universal ηT pairing. Proposition 1 shows the
relationship between Tate pairing and the universal ηT pairing. We then present
some timings of the universal ηT pairing in C language. In Section 4 we present
the proof of Proposition 1 and the correctness of algorithms appeared in Sec-
tion 3. In Section 5 we conclude this paper.

2 Tate Pairing Over Supersingular Curve with
Characteristic Three

Let F3n be an extension field over F3 of degree n. Let Eb be the supersingular
elliptic curve defined by y2 = x3 − x + b with b ∈ {1, −1}. All supersingular
curves are isomorphic to this curve. The set of all points on Eb over F3n defined
by

Eb(F3n) = {(x, y) ∈ F3n × F3n : y2 = x3 − x+ b} ∪ {O},
1 In the case of the ηT pairing over F2n , MIRACL supports the general extension

degree using 4 branches [13].

Universal ηT Pairing Algorithm over Arbitrary Extension Degree 3

forms a group, where O is the point at infinity. Note that the extension degree
n should be gcd(n, 6) = 1, it then satisfies n ≡ 1, 5, 7, 11 (mod 12) [3]. In this
paper we deal with the arbitrary degree n with gcd(n, 6) = 1. We define b′ as

b′ =
{

b if n ≡ 1, 11 (mod 12),
−b if n ≡ 5, 7 (mod 12), (1)

then it is known that

#Eb(F3n) = 3n + 1 + b′3(n+1)/2. (2)

2.1 Tate Pairing

Let l be a large prime number, l |#Eb(F3n) and l | (36n− 1). Let P ∈ Eb(F3n)[l]
and let Q ∈ Eb(F36n)/lEb(F36n). Then Tate pairing e(P,Q) over Eb(F3n) is
a pairing, e : Eb(F3n)[l] × Eb(F36n)/lEb(F36n) → F

∗
36n/(F ∗36n)l, and defined as

e(P,Q) = fP,l(Q), where fP,N is a function whose divisor is (fP,N) = (N −
1)(P)− ((N − 1)P)− (N − 2)(O) for any positive integer N .

Since e(P,Q) ∈ F
∗
36n/(F ∗36n)l, we require an arithmetic on F36n . A basis

{1, σ, ρ, σρ, ρ2, σρ2} of F36n over F3n gives an efficient arithmetic on F36n , where
σ and ρ satisfy σ = −1 and ρ3 = ρ+ b.

For a point Q = (x, y) ∈ Eb(F3n) the distortion map ψ is one-to-one homo-
morphism defined by

ψ(x, y) = (ρ− x, yσ) in Eb(F36n). (3)

Then e(P, ψ(Q)) is defined for P,Q ∈ Eb(F3n). Note that the representation of
e(P, ψ(Q)) has ambiguity since e(P, ψ(Q)) is contained in a coset of the residue
group F

∗
36n/(F ∗36n)l. In order to remove this ambiguity, the final exponentiation is

required, which is a powering by (36n− 1)/l. Here we denote e(P, ψ(Q))(3
6n−1)/l

by ê(P,Q), then ê(P,Q) has bilinearity, namely ê(aP,Q) = ê(P, aQ) = ê(P,Q)a

for any non zero integer a. The bilinearity is used in many new cryptographic
applications such as identity-based cryptosystem [5], short signature [7] and
efficient broadcast cryptosystem [6].

Miller proposed an efficient algorithm for computing fP,l(ψ(Q)) on arbitrary
elliptic curve over arbitrary field [12]. Barreto et. al. [2] and Galbraith et. al.
[10] proposed Miller algorithm in base three using the following calculation of
function f at point Q ∈ Eb(F3n), f ← f3 · (l1l2)(Q), where l1, l2 are a tangent
line of Eb at Q and a line going through Q and 2Q, respectively.

Miller algorithm in base three is suitable for pairing on Eb(F3n) since cubing
operation and a computation of 3Q are virtually for free. Note that 3Q for
Q = (xq , yq) ∈ Eb(F3n) is calculated as follows:

3Q = (x9
q − b,−y9

q) = φπ2(Q), (4)

where π is the 3rd-power Frobenius map on Eb, namely π(Q) = (x3
q , y

3
q), and φ

is a map defined as
φ(xq , yq) = (xq − b,−yq). (5)

4 M. Shirase et al.

2.2 Duursma-Lee Algorithm

There is an important property of Tate pairing [10]. Let m be an integer such
that l |m and m | (36n − 1). Then fP,m(ψ(Q))(3

6n−1)/m = fP,l(ψ(Q))(3
6n−1)/l =

ê(P,Q).
Duursma and Lee effectively used this property to propose a closed algorithm

for computing Tate pairing on supersingular curves [8]. We know that l | (33n+1)
and (33n +1) | (36n−1) due to Eq.(2) and l|#E(F3n). In the algorithm 33n +1 is
set to N , where the Hamming weight of N in base three is very sparse. Duursma
and Lee then showed that the function l1l2 of Miller algorithm in base three is
equivalent to an explicit function

gR(x, y) = y3
ry − (x3

r + x− b)2, (6)

whose divisor is (gR) = 3R+ (−3R)− 4(O) for R = (xr , yr).
The function gR can be utilized to compute a function fP,3k+1 for any positive

integer k [11],
fP,3k+1 = g3k−1

P g3k−2

3P · · · g3
3k−2P g3k−1P . (7)

Setting k = 3n in Eq.(7), we see fP,33n+1(ψ(Q)) =
∏3n

i=1(g3i−1P (ψ(Q)))3
3n−i

.
Therefore we obtain

fP,33n+1(ψ(Q)) =
n

∏

i=1

gπi(P)(πn+1−i(ψ(−Q)) (8)

due to (g3i−1P (ψ(Q)))3
3n−i

= (g3i−n−1P (ψ(Q)))3
2n−i

= (g3i−2n−1P (ψ(Q)))3
n−i

.
The explicit description of Duursma-Lee algorithm is derived from Eq. (8) and
thus it has n iterations in the main loop.

2.3 ηT Pairing

Barreto et. al. [3] proposed the ηT pairing to decrease the iteration number of
Duursma-Lee algorithm. Here we describe the ηT pairing on supersingular curve
over characteristic three. Let T be an integer such that

T = 3(n+1)/2 + b′. (9)

Then the ηT (P,Q) for P,Q ∈ Eb(F3n) is defined as ηT (P,Q) = f−P,T (ψ(Q)) if
b′ = 1 and ηT (P,Q) = fP,T (ψ(Q)) otherwise.

Setting k = (n + 1)/2 in Eq.(7), we see fP,3(n+1)/2+1 =
∏(n+1)/2

i=1 g3(n+1)/2−i

3i−1 .
Barreto et. al. showed that the difference between f±P,T and fP,3(n+1)/2+1 is
represented by a function of a line l3P ′,b′P going through 3P ′ and b′P , where
P ′ = 3(n−1)/2P . Then ηT (P,Q) = l3P ′,b′P (ψ(Q))

∏(n−1)/2
j=0 g3iP (ψ(Q))3

(n−1)/2−i

.
Moreover it can be rewritten as

ηT (P,Q) = l3P ′,b′P (ψ(Q))
(n−1)/2

∏

j=0

g3−jP ′(ψ(Q))3
j

, (10)

to remove the exponent 3(n−1)/2.

Universal ηT Pairing Algorithm over Arbitrary Extension Degree 5

Eq.(10) is similar to Eq.(8), but only has (n + 1)/2 iterations, which means
the cost of ηT pairing is about half of Duursma-Lee algorithm. Note that T =
3(n+1)/2 ± 1 is as large as |#Eb(F3n) − 3n − 1|, which is the absolute value of
the trace of Eb(F3n).
ηT (P,Q) itself is contained in a coset of the residue group F

∗
36n/(F ∗36n)#Eb(F3n).

Therefore one cannot use ηT (P,Q) in cryptographic protocols due to its ambigu-
ity. ηT (P,Q) requires the final exponentiation of powering by W to be a bilinear
pairing, where W is an integer defined as

W = (33n − 1)(3n + 1)(3n + 1− b′(3(n+1))) (= (36n − 1)/#Eb(F3n)). (11)

There is an efficient algorithm for computing the final exponentiation in [15].
Let Z be an integer such that

Z = −b′3(n+3)/2. (12)

Then there is a relationship between the ηT pairing and Tate pairing,

(ηT (P,Q)W)3T 2
= ê(P,Q)Z . (13)

It is essential to find an algorithm for computing ê(P,Q)X for some integer X
that becomes a bilinear pairing. However, if we need to convert the ηT pairing
to Tate pairing via Eq.(13), there is an efficient conversion algorithm, see [4].

Note that the original algorithm for computing the ηT pairing in [3] includes
computations of cube root computations. In general it takes the cost of 0.8∼2
multiplications [1], then we cannot neglect their costs. Beuchat et. al. gener-
ated an algorithm (Algorithm 2 in [4]) that has no cube root and outputs
ηT (P,Q)3

(n+1)/2
.

3 Proposed Explicit Algorithms

In this section we present an explicit algorithm for computing the ηT pairing
with arbitrary extension degree n. We then propose the universal ηT pairing
whose algorithm has no branch in the program.

3.1 ηT Pairing for Arbitrary n

An algorithm for computing the ηT pairing with arbitrary extension degree n
can be constructed from Eq.(10). Since both l3P ′,b′P and g3−jP ′ depend on the
extension degree n and the curve parameter b′, the explicit description of ηT

pairing has a complex form and causes many branches in the program. Lemma
5 of [3] explains about l3P ′,b′P in all cases, however g3−jP ′ is considered only for
n ≡ 1 (mod 12). In this section we investigate g3−jP ′ in details.

Note that g3−jP ′ needs a computation of P ′ = 3(n−1)/2P . In order to efficiently
compute P ′ we use Eq.(4), then we see

P ′ = φ(n−1)/2π(n−1)(P). (14)

6 M. Shirase et al.

Algorithm 1. Computation of ηT (P, Q)3
(n+1)/2

for arbitrary n

input: P = (xp, yp), Q = (xq, yq) ∈ Eb(F3n)

output: (ηT (P, Q))3
(n+1)/2 ∈ F

∗
36n/(F ∗

36n)#Eb(F3n)

1. b′ ←
{

b if n ≡ 1, 11 (mod 12)
−b if n ≡ 5, 7 (mod 12)

2. if b′ = 1 then yp ← −yp

3. R0 ←

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−yp(xp + xq + b) + yqσ + ypρ if n ≡ 1 (mod 12)
−yp(xp + xq − b) + yqσ + ypρ if n ≡ 5 (mod 12)
yp(xp + xq + b) + yqσ − ypρ if n ≡ 7 (mod 12)
yp(xp + xq − b) + yqσ − ypρ if n ≡ 11 (mod 12)

4. d←
{

b if n ≡ 1, 7 (mod 12)
−b if n ≡ 5, 11 (mod 12)

5. for i← 0 to (n− 1)/2 do
6. r0 ← xp + xq + d

7. R1 ←
{−r2

0 + ypyqσ − r0ρ− ρ2 if n ≡ 1, 5 (mod 12)
−r2

0 − ypyqσ − r0ρ− ρ2 if n ≡ 7, 11 (mod 12)
8. R0 ← R0R1

9. yq ← −yp

10. xq ← x9
q, yq ← y9

q

11. R0 ← R3
0

12. d← d− b (mod 3)
13. end for
14. return R0

The explicit description of P ′ depends on not only the extension degree n but
also the curve parameter b arisen from φ in Eq. (5).

We present Algorithm 1 which is an explicit algorithm for computing the
ηT pairing with arbitrary n. The proposed explicit algorithm is based on the
variation of the ηT pairing discussed by Beuchat et. al. [4] which has no cube
root computation for n ≡ 1 (mod 12). Refer Section 4.1 for a proof of the
correctness of Algorithm 1.

The branches in Steps 1-4 and Step 7 are caused by l3P ′,b′P (Lemma 5 of [3])
and g3−jP ′ , respectively.

3.2 Universal ηT Pairing

Algorithm 1 has many branches that depend on the value of (n mod 12) and b′.
If there is an algorithm without branches, then it becomes more implementor-
friendly. Therefore Section 3.2 proposes the universal ηT pairing, η̃T (P,Q), that
has no branch and is as efficient as the original ηT pairing. The proposed algo-
rithm is given by Algorithm 2.

The following proposition describes the difference between the ηT pairing
(Algorithm 1) and the η̃T pairing (Algorithm 2).

Universal ηT Pairing Algorithm over Arbitrary Extension Degree 7

Algorithm 2.Computation of η̃T (P, Q) for arbitrary n

input: P = (xp, yp), Q = (xq, yq) ∈ Eb(F3n)

output: η̃T (P, Q) ∈ F
∗
36n/(F ∗

36n)#Eb(F3n)

1. R0 ← −yp(xp + xq + b) + yqσ + ypρ
2. d← b
3. for i← 0 to (n− 1)/2 do
4. r0 ← xp + xq + d
5. R1 ← −r2

0 + ypyqσ − r0ρ− ρ2

6. R0 ← R0R1

7. yq ← −yp

8. xq ← x9
q, yq ← y9

q

9. R0 ← R3
0

10. d← d− b (mod 3)
11. end for
12. return R0

Proposition 1. Let n be an odd prime with gcd(n, 6) = 1, and let T , W and
Z be integers defined as Eqs.(9), (11) and (12), respectively. Then we have the
following properties of η̃T (P,Q) for P,Q ∈ Eb(F3n).
(i) η̃T (P,Q)W with final exponentiationW is a non-degenerate and bilinear pairing.
(ii) η̃T (P,Q)W = ê(P,Q)U , where U = (3(n−1)/2 · V ZT−2 mod #Eb(F3n)) and
V is defined by the following table.

b = 1 b = −1

n ≡ 1 (mod 12) −1 1

n ≡ 5 (mod 12) 3(n+1)/2 − 2 3(n+1)/2 + 2

n ≡ 7 (mod 12) −1 1

n ≡ 11 (mod 12) −3(n+1)/2 − 2 −3(n+1)/2 + 2

The proof of Proposition 1 is described in Section 4.2. The final exponenti-
ation for η̃T (P,Q) is same as that for the ηT (P,Q) pairing, which is efficiently
computed by the algorithm from [15]. Due to Proposition 1-(i) we can apply the
η̃T pairing to cryptographic applications with a bilinear pairing. If necessary, we
can obtain Tate pairing ê(P,Q) from η̃T (P,Q) due to Proposition 1-(ii).

Note that η̃T (P,Q)W is included in the torus T2(F33n). Therefore the conver-
sion of η̃T (P,Q)W to ê(P,Q), a powering by U−1, can be efficiently performed
with arithmetic in T2(F33n), refer to [15].

Moreover, the proposed η̃T pairing has good properties, namely it has no
branch and no cube root computation unlike the original ηT pairing. The η̃T

pairing is as efficient as the variation of ηT pairing, which is one of the fastest
implementations of a bilinear pairing [4].

3.3 Implementation Results

We implemented the η̃T pairing (Algorithm 2) in C language. It is implemented
on an AMD OpteronTM Processor 275 at 2.2GHz using 8GByte RAM.

8 M. Shirase et al.

Table 1. Timing of operations on F3n and computation of the η̃T pairing (μsec)

Extension degree (n) 97(SSE) 97 167 193 239 313

Addition 0.0083 0.0168 0.0210 0.0237 0.0265 0.0377

Cubing 0.0394 0.1610 0.2104 0.2694 0.3052 0.3943

Multiplication 0.5009 1.2056 2.9757 3.7164 5.3137 8.2219

Inversion 7.7111 12.0865 28.6980 39.7646 55.5295 95.9911

η̃T
W (Alg.2+[15]) 479.63 1164.16 4406.26 6267.99 10753.17 21796.96

We mainly follow the implementation described in [9]. The polynomial base
representation is used for F3n . Finite field F3 = {0, 1, 2} is encoded by two bits,
and an addition in F3 is programmed by 7 Boolean logic operations [9]. We
implemented the multiplication by the right-to-left sfift-addition algorithm with
the signed window method of width 3. The extended Euclidean algorithm is used
for the inversion. We deploy the final exponentiation using the torus proposed
by Shirase et. al. [15].

Table 1 presents the timing of the η̃T pairing for different extension degrees
n = 97, 167, 193, 239, 313. The timing is an average value for 1,000,000 randomly
chosen elements on the base field F3n or elliptic curveEb(F3n). If we choose about
twice larger extension degree, then the η̃T pairing becomes about 5 times slower.
The η̃T pairing with n = 313 can be implemented in about 20 milliseconds. In
case of n = 97 we optimized our programming suitable for the streaming SIMD
extensions (SSE). The timing using SSE for the η̃T pairing with n = 97 achieves
under 0.5 milliseconds, which is more than twice as fast than the implementation
without SSE. The embedded field of extension degree n is F36n , and their bit size
are 923, 1589, 1836, 2273, 2977 for n = 97, 167, 193, 239, 313, respectively.

4 Proofs of Proposition and Algorithm

We prove the Proposition 1 and the correctness of Algorithm 1 described in this
paper.

4.1 Proof of Algorithm 1

In order to prove the correctness of Algorithm 1 we introduce Algorithm 3
which is an extension of the original ηT (P,Q) [3] to arbitrary extension de-
gree n. Denote by R

(Alg.1)
0,j and R

(Alg.3)
0,j the value in register R0 at the j-th

loop of Algorithm 1 and Algorithm 3, respectively. They are related by equation
R

(Alg.1)
0,j = (R(Alg.3)

0,j)3
j+1

(see also Appendix II in [4]). Therefore we see that if

Algorithm 3 outputs ηT (P,Q) then Algorithm 1 outputs ηT (P,Q)3
(n+1)/2

. Then
it is sufficient to prove the correctness of Algorithm 3.

Recall that ηT (P,Q) for arbitrary n is defined using two values, l3P ′,b′P (ψ(Q))
and g3−jP ′(φ(Q))3

j

. We prove that g3−jP ′(φ(Q))3
j

, which corresponds to the j-
th loop of Step 5 and 6 in Algorithm 3, can be computed by Lemma 1.

Universal ηT Pairing Algorithm over Arbitrary Extension Degree 9

Algorithm 3. Computation of ηT (P, Q) for arbitrary n
(Including cube root version)

input: P = (xp, yp), Q = (xq, yq) ∈ Eb(F3n)

output: ηT (P, Q) ∈ F
∗
36n/(F ∗

36n)#Eb(F3n)

1. b′ ←
{

b if n ≡ 1, 11 (mod 12)
−b if n ≡ 5, 7 (mod 12)

2. if b′ = 1 then yp ← −yp

3. R0 ←

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−yp(xp + xq + b) + yqσ + ypρ if n ≡ 1 (mod 12)
−yp(xp + xq − b) + yqσ + ypρ if n ≡ 5 (mod 12)
yp(xp + xq + b) + yqσ − ypρ if n ≡ 7 (mod 12)
yp(xp + xq − b) + yqσ − ypρ if n ≡ 11 (mod 12)

4. for i← 0 to (n− 1)/2 do

5. r0 ←
{

xp + xq + b if n ≡ 1, 7 (mod 12)
xp + xq − b if n ≡ 5, 11 (mod 12)

6. R1 ←
{−r2

0 + ypyqσ − r0ρ− ρ2 if n ≡ 1, 5 (mod 12)
−r2

0 − ypyqσ − r0ρ− ρ2 if n ≡ 7, 11 (mod 12)
7. R0 ← R0R1

8. xp ← x
1/3
p , yp ← y

1/3
p

9. xq ← x3
q, yq ← y3

q

10. end for
11. return R0

Lemma 1. Let n be an odd prime. Then

g3−jP ′(φ(Q))3
j

=

{

−r20 + y
(−j)
p y

(j)
q σ − r0ρ− ρ2 if n ≡ 1 (mod 4),

−r20 − y(−j)
p y

(j)
q σ − r0ρ− ρ2 if n ≡ 3 (mod 4),

for P = (xp, yp), Q = (xq , yq) ∈ Eb(F3n), where r0 is defined as

r0 =
{

xp + xq + b if n ≡ 1 (mod 6),
xp + xq − b if n ≡ 5 (mod 6).

Proof. See the appendix. �

Next we have

l3P ′,b′P (x, y) =
{

y + yp(x − xp)− b′yp if n ≡ 1, 5 (mod 12),
y − yp(x − xp)− b′yp if n ≡ 7, 11 (mod 12). (15)

from Lemma 5 of [3]. Therefore the formula forR0 in Steps 1 and 3 can be obtained
due to Eqs. (1) and (15). Therefore we prove the correctness of Algorithm 3.

4.2 Proof of Proposition 1

We first prove Proposition 1-(ii). Let ηT (P,Q) be the output of Algorithm 4.
Denote by R

(Alg.2)
0,j and R

(Alg.4)
0,j the value in register R0 at the j-th loop of

Algorithm 2 and Algorithm 4, respectively. Then we see that

η̃T (P,Q) = ηT (P,Q)3
(n+1)/2

, (16)

10 M. Shirase et al.

Algorithm 4.Computation of ηT (P, Q) for arbitrary n

input: P = (xp, yp), Q = (xq, yq) ∈ Eb(F3n)

output: ηT (P, Q) ∈ F
∗
36n/(F ∗

36n)#Eb(F3n)

1. R0 ← −yp(xp + xq + b) + yqσ + ypρ
2. for i← 0 to (n− 1)/2 do
3. r0 ← xp + xq + b
4. R1 ← −r2

0 + ypyqσ − r0ρ− ρ2

5. R0 ← R0R1

6. xp ← x
1/3
p , yp ← y

1/3
p

7. xq ← x3
q, yq ← y3

q

8. end for
9. return R0

since R(Alg.2)
0,j = (R(Alg.4)

0,j)3
j+1

. Due to Eqs.(13) and (16), it is enough to prove
that ηT (P,Q)W = ηT (P,Q)V W .

The difference between Algorithm 3 and 4 causes the corresponding difference
between ηT (P,Q) and ηT (P,Q). There are two differences, the first difference
is that Algorithm 3 has the program

“ if b′ = 1 then yp ← −yp”, (17)

and the second difference is that Algorithm 3 has the branches at Steps 1, 3,
5 and 6.

In order to investigate the first difference, we modify Algorithm 4 by ap-
pending the program (17) before Step 1. We call this modified algorithm as
Algorithm 4’, and denote by η′T (P,Q) the pairing value from Algorithm 4’. The
relationship between ηT (P,Q) and η′T (P,Q) is obtained by Lemma 2.

Lemma 2. We have

ηT (P,Q)W =
{

(η′T (P,Q)W)−1 if b′ = 1
η′T (P,Q)W if b′ = −1

Proof. We see that ηT is identical to η′T if b = −1. On the other hand, ηT is dif-
ferent from η′T if b = 1. We obtain ηT (P,Q) = η′T (−P,Q) since −P = (xp,−yp)
for P = (xp, yp) ∈ Eb(F3n). Bilinearity of ηT (P,Q)W products a relationship
ηT (P,Q)W = η′T (−P,Q)W = (η′T (P,Q)W)−1. �

Remark 1. ηT without the powering by W is not bilinear pairing. Then the
powering by W is required in the statement of Lemma 2.

The second difference causes the difference between η′T (P,Q) and ηT (P,Q).
We soon see that η′T (P,Q) = ηT (P,Q) if n ≡ 1 (mod 12). When n ≡ 5 (mod
12), a converting xq → xq − b, in other words Q→ φ4(Q), in Algorithm 2 gives
Algorithm 4. Then η′T (P,Q) = ηT (P, φ4(Q)) if n ≡ 5 (mod 12). We easily see
also that the relationship between η′T (P,Q) and ηT (P,Q) for n ≡ 7, 11 (mod
12). Then we have

Universal ηT Pairing Algorithm over Arbitrary Extension Degree 11

η′T (P,Q) =

⎧

⎪

⎨

⎪

⎩

ηT (P, Q) if n ≡ 1 (mod 12)
ηT (P, φ4(Q))(= ηT (P,−φ(Q))) if n ≡ 5 (mod 12)
ηT (P,−Q) if n ≡ 7 (mod 12)
ηT (P, φ(Q)) if n ≡ 11 (mod 12)

(18)

Due to Lemma 2 and Eq.(18) we have the relationship ηT (P,Q)W and
ηT (P,Q)W ,

ηT (P,Q)W =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(ηT (P, Q)W)−1 if n ≡ 1 (mod 12), b′ = 1 (b = 1)
ηT (P, Q)W if n ≡ 1 (mod 12), b′ = −1 (b = −1)
(ηT (P,−φ(Q))W)−1 if n ≡ 5 (mod 12), b′ = 1 (b = −1)
ηT (P,−φ(Q))W if n ≡ 5 (mod 12), b′ = −1 (b = 1)

(ηT (P,−Q)W)−1 if n ≡ 7 (mod 12), b′ = 1 (b = −1)
ηT (P,−Q)W if n ≡ 7 (mod 12), b′ = −1 (b = 1)
(ηT (P, φ(Q))W)−1 if n ≡ 11 (mod 12), b′ = 1 (b = 1)
ηT (P, φ(Q))W if n ≡ 11 (mod 12), b′ = −1 (b = −1)

(19)

Lastly in order to show that φ is a homomorphism of Eb(F3n), we show that
φ is represented as a scalar multiplication.

Lemma 3. For P ∈ Eb(F3n), φ(P) is equal to a value in the following table.

b = 1 b = −1

n ≡ 1 (mod 12) 3nP 3nP

n ≡ 5 (mod 12) (−3(n+1)/2 + 2)P (3(n+1)/2 + 2)P

n ≡ 7 (mod 12) 3nP 3nP

n ≡ 11 (mod 12) (3(n+1)/2 + 2)P (−3(n+1)/2 + 2)P

Proof. See the appendix. �

Here we go back to the proof of Proposition 1. Lemma 3, Eq.(19), and the bi-
linearity of ηT (P,Q)W yield Proposition 1-(ii). Finally we prove Proposition
1-(i) in the following. V and 3(n+1)/2 are coprime to #Eb(F3n) with V =
±1, 3(n+1) ± 2, −3(n+1) ± 2, which means that a powering by 3(n+1)/2 · V is
a group isomorphism in F

∗
36n . The ηW

T is a non-degenerate and bilinear pairing,
then the ηT

W (= η3(n+1)/2V W
T) is also a non-degenerate and bilinear pairing.

5 Conclusion

This paper provided an explicit algorithm for computing the ηT pairing with
arbitrary degree n. It has many branches based on extension degree n and the
curve parameter b. Therefore, this paper also proposed the universal ηT pairing
(η̃T pairing) which has no branch in the program and is suitable for the effi-
cient implementation for arbitrary extension degree n. Moreover we proved the
relationship between the η̃T pairing and the Tate pairing for arbitrary n.

Finally we summarize the relationship of pairings appeared in this paper in
the following table.

12 M. Shirase et al.

Pairing Properties

ê(P, Q) no branch and no cube root ([11])
�

⏐

 Eq.(13)

ηT (P, Q)W branches and cube roots (Sec.3.1)
�

⏐

 powering by V Proposition 1)

ηT (P, Q)W no branch and cube roots (Sec.4.2)
�

⏐

 powering by 3(n+1)/2

η̃T (P, Q)W no branch and no cube root (Sec.3.2)

References

1. Barreto, P.: A note on efficient computation of cube roots in characteristic 3,
Cryptology ePrint Archive, Report 2004/305 (2004)

2. Barreto, P., Kim, H., Lynn, B., Scott, M.: Efficient algorithms for pairing-based
cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368.
Springer, Heidelberg (2002)

3. Barreto, P., Galbraith, S., Ó hÉigeartaigh, C., Scott, M.: Efficient pairing com-
putation on supersingular abelian varieties. In: Designs, Codes and Cryptography,
vol. 42(3), pp. 239–271. Springer, Heidelberg (2007)

4. Beuchat, J.-L., Shirase, M., Takagi, T., Okamoto, E.: An algorithm for the ηT

pairing calculation in characteristic three and its hardware implementation. In:
18th IEEE International Symposium on Computer Arithmetic, ARITH-18, pp.
97–104 (2007) full version, Cryptology ePrint Archive, Report 2006/327 (2006)

5. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM
Journal of Computing 32(3), 586–615 (2003)

6. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

7. Boneh, D., Lynn, B., Shacham, H.: Short signature from the Weil pairing. Journal
of Cryptology 17(4), 297–319 (2004)

8. Duursma, I., Lee, H.: Tate pairing implementation for hyperelliptic curves y2 =
xp−x+ d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123.
Springer, Heidelberg (2003)

9. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic
for pairing-based cryptography in characteristic three. IEEE Transactions on Com-
puters 54(7), 852–860 (2005)

10. Galbraith, S., Harrison, K., Soldera, D.: Implementing the Tate pairing. In: Fieker,
C., Kohel, D.R. (eds.) Algorithmic Number Theory. LNCS, vol. 2369, pp. 324–337.
Springer, Heidelberg (2002)

11. Kwon, S.: Efficient Tate pairing computation for supersingular elliptic curves over
binary fields, Cryptology ePrint Archive, Report 2004/303 (2004)

12. Miller, V.: Short programs for functions on curves, Unpublished manuscript (1986),
http://crypto.stanford.edu/miller/miller.pdf

13. MIRACL, ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip
14. Ronan, R., hÉigeartaigh, C.Ó., Murphy, C., Kerins, T., Barreto, P.: A reconfig-

urable processor for the cryptographic ηT pairing in characteristic 3. In: Infor-
mation Technology: New Generations, ITNG 2007, pp. 11–16. IEEE Computer
Society, Los Alamitos (2007)

http://crypto.stanford.edu/miller/miller.pdf
ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip

Universal ηT Pairing Algorithm over Arbitrary Extension Degree 13

15. Shirase, M., Takagi, T., Okamoto, E.: Some efficient algorithms for the final expo-
nentiation of ηT pairing. In: ISPEC 2007. LNCS, vol. 4464, pp. 254–268. Springer,
Heidelberg (2007)

16. Silverman, J.: The arithmetic of elliptic curves. Springer, Heidelberg (1986)

A Some Lemmas

In the appendix we prove two lemmas appeared in this paper.

Lemma 1. Let n be an odd prime. Then

g3−jP ′(φ(Q))3
j

=

{

−r20 + y
(−j)
p y

(j)
q σ − r0ρ− ρ2 if n ≡ 1 (mod 4),

−r20 − y(−j)
p y

(j)
q σ − r0ρ− ρ2 if n ≡ 3 (mod 4),

for P = (xp, yp), Q = (xq , yq) ∈ Eb(F3n), where r0 is defined as

r0 =
{

xp + xq + b if n ≡ 1 (mod 6),
xp + xq − b if n ≡ 5 (mod 6).

Proof. First we inspect how P ′ = 3(n−1)/2P (Eq.(14)) is represented. We see
that

φs(x, y) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(x, y) if s ≡ 0 (mod 6),
(x− b, −y) if s ≡ 1 (mod 6),
(x + b, y) if s ≡ 2 (mod 6),
(x, −y) if s ≡ 3 (mod 6),
(x− b, y) if s ≡ 4 (mod 6),
(x + b, −y) if s ≡ 5 (mod 6),

(20)

for any (x, y) ∈ Eb(F3n) and any integer s due to Eq.(5). Then we have

φ(n−1)/2(x, y) =

⎧

⎪

⎨

⎪

⎩

φ0(x, y) = (x, y) if n ≡ 1 (mod 12),
φ2(x, y) = (x + b, y) if n ≡ 5 (mod 12),
φ3(x, y) = (x,−y) if n ≡ 7 (mod 12),
φ5(x, y) = (x + b,−y) if n ≡ 11 (mod 12).

The notation of a(i) means a3i

. We see that

πn(xp, yp) = (xp, yp) (21)

for P = (xp, yp) ∈ Eb(F3n) since xp and yp ∈ F3n . Then we have πn−1(xp, yp) =
(x(−1)

p , y
(−1)
p). Therefore we see

P ′ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(x
(−1)
p , y

(−1)
p) if n ≡ 1 (mod 12),

(x
(−1)
p + b, y

(−1)
p) if n ≡ 5 (mod 12),

(x
(−1)
p , −y

(−1)
p) if n ≡ 7 (mod 12),

(x
(−1)
p + b, −y

(−1)
p) if n ≡ 11 (mod 12).

Note that
φ3(x, y) = −(x, y), (22)

14 M. Shirase et al.

due to −(x, y) = (x,−y) and Eq.(20).
Next we use induction for j to prove Lemma 1. Definition equations of gR and

ψ, Eqs.(3) and (6), are utilized to prove Lemma 1 for j = 0.

Case of n ≡ 1 (mod 12): By P ′ = (x(−1)
p , y

(−1)
p),

gP ′(ψ(Q)) = (y(−1)
p)3yqσ − ((x(−1)

p)3 − (ρ− xq) + b)2

= ypyqσ − (xp + xq + b− ρ)2 = −r20 + ypyqσ − r0ρ− ρ2,

where r0 = xp + xq + b.

Case of n ≡ 5 (mod 12): By P ′ = (x(−1)
p + b, y

(−1)
p),

gP ′(ψ(Q)) = (y(−1)
p)3yqσ − ((x(−1)

p + b)3 − (ρ− xq) + b)2

= ypyqσ − (xp + xq − b− ρ)2 = −r20 + ypyqσ − r0ρ− ρ2,

where r0 = xp + xq − b.
Case of n ≡ 7 (mod 12): By P ′ = (x(−1)

p , −y(−1)
p),

gP ′(ψ(Q)) = (−y(−1)
p)3yqσ − ((x(−1)

p)3 − (ρ− xq) + b)2

= −ypyqσ − (xp + xq + b− ρ)2 = −r20 − ypyqσ − r0ρ− ρ2,

where r0 = xp + xq + b.

Case of n ≡ 11 (mod 12): By P ′ = (x(−1)
p + b, −y(−1)

p),

gP ′(ψ(Q)) = (y(−1)
p)3yqσ − ((x(−1)

p + b)3 − (ρ− xq) + b)2

= −ypyqσ − (xp + xq + b− ρ)2 = −r20 − ypyqσ − r0ρ− ρ2,

where r0 = xp + xq − b.
We complete proving Lemma 1 for j = 0.
We suppose that Lemma 1 is held for j = j′. Then we easily see that Lemma 1

is also held for j = j′ + 1 with direct computations. �
Lemma 3. For P ∈ Eb(F3n), φ(P) is equal to a value in the following table.

b = 1 b = −1

n ≡ 1 (mod 12) 3nP 3nP

n ≡ 5 (mod 12) (−3(n+1)/2 + 2)P (3(n+1)/2 + 2)P

n ≡ 7 (mod 12) 3nP 3nP

n ≡ 11 (mod 12) (3(n+1)/2 + 2)P (−3(n+1)/2 + 2)P

Proof. Let P = (xp, yp) be contained in Eb(F3n). Then we can use addition and
duplication formulae of elliptic curves (see [16] for details) to obtain equations

{

π(P) + 2P = (xp − 1,−yp) if b = 1,
−π(P) + 2P = (xp + 1,−yp) if b = −1. (23)

Universal ηT Pairing Algorithm over Arbitrary Extension Degree 15

The following calculations complete the proof.

Case of n ≡ 1 (mod 12), b = 1:

3nP = φnπ2n(P) = φ(P) by (4), (20), (21)

Case of n ≡ 1 (mod 12), b = −1:

3nP = φnπ2n(P) = φ(P) by(4), (20), (21)

Case of n ≡ 5 (mod 12), b = 1:

(−3(n+1)/2 + 2)P = −φ(n+1)/2πn+1(P) + 2P by (4)
= −φ3π(P) + 2P by (20), (21)
= π(P) + 2P by (22)
= φ(P) by (23)

Case of n ≡ 5 (mod 12), b = −1:

(3(n+1)/2 + 2)P = φ(n+1)/2πn+1(P) + 2P by (4)
= φ3π(P) + 2P by (20), (21)
= −π(P) + 2P by (22)
= φ(P) by (23)

Case of n ≡ 7 (mod 12), b = 1:

3nP = φnπ2n(P) = φ(P) by (4), (20), (21)

Case of n ≡ 7 (mod 12), b = −1:

3nP = φnπ2n(P) = φ(P) by (4), (20), (21)

Case of n ≡ 11 (mod 12), b = 1:

(3(n+1)/2 + 2)P = φ(n+1)/2πn+1(P) + 2P by (4)
= π(P) + 2P by (20), (21)
= φ(P) by (23)

Case of n ≡ 11 (mod 12), b = −1:

(−3(n+1)/2 + 2)P = −φ(n+1)/2πn+1(P) + 2P by (4)
= −π(P) + 2P by (20), (21)
= φ(P) by (23)

We complete proving Lemma 3. �

Convertible Undeniable Proxy Signatures:

Security Models and Efficient Construction�

Wei Wu, Yi Mu, Willy Susilo, and Xinyi Huang

Centre for Computer and Information Security Research
School of Computer Science & Software Engineering

University of Wollongong, Australia
{wei,ymu,wsusilo,xh068}@uow.edu.au

Abstract. In the undeniable signatures, the validity or invalidity can
only be verified via the Confirmation/Disavowal protocol with the help
of the signer. Convertible undeniable signatures provide the flexibility
that a signer can convert an undeniable signature into publicly verifi-
able one. A proxy signature scheme allows an entity to delegate his/her
signing capability to another entity in such a way that the latter can
sign messages on behalf of the former when the former is not available.
Proxy signatures have found numerous practical applications in ubiqui-
tous computing, distributed systems, mobile agent applications, etc. In
this paper, we propose the first convertible undeniable proxy signature
scheme with rigorously proven security. The properties of Unforgeabil-
ity, Invisibility and Soundness in the context of convertible undeniable
proxy signatures are also clearly defined. The security of our construction
is formally proven in the random oracle models, based on some natural
complexity assumptions.

Keywords: Undeniable signatures, Proxy signatures, Convertible,
Security models, Security proof.

1 Introduction

Undeniable signatures are like ordinary digital signatures, with the only dif-
ference that they are not universally verifiable and the validity or invalidity
of an undeniable signature can only be verified via a Confirmation/Disavowal
protocol with the help of the signer. Undeniable signatures have found vari-
ous applications such as in licensing software, electronic voting and auctions.
Since its introduction in Cypto’89 [5], there have been a number of schemes in
the literature [1,6,7,8,9,11,19,20,21,23,24,25,31,32]. The concept of convertible
undeniable signatures was introduced by Boyar, Chaum, Damg̊ard and Peder-
sen [1] in Crypto’90. The new concept offers more flexibility than its original
version in the sense that the signer has the ability to convert an undeniable
signature into publicly verifiable one. Convertible undeniable signatures require
two convert algorithms: individually convert algorithm and universally convert
� Supported by ARC Discovery Grant DP0557493 and DP0663306.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 16–29, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Convertible Undeniable Proxy Signatures 17

algorithm. The individually convert algorithm allows the signer to convert an
undeniable signature into a regular signature by releasing a piece of information
at a later time. Moreover, the universally convert algorithm can help the signer
to convert all the undeniable signatures into publicly verifiable ones. In this case,
anyone can check the validity of any undeniable signature without any help of
the signer.

The notion of proxy signature was introduced by Mambo, Usuda and Okamoto
[22]. Based on the delegation type, there are three types of proxy signatures: full
delegation, partial delegation, and delegation by warrant. In the full delegation
system, Alice’s secret key is given to Bob directly so that Bob can have the same
signing capability as Alice. In practice, such schemes are obviously impractical
and insecure. In a partial delegation proxy signature scheme, a proxy signer pos-
sesses a key, called private proxy key, which is different from Alice’s private key.
Hence, proxy signatures generated by using the private proxy key are different
from Alice’s signatures. However, in such schemes, the messages a proxy signer
can sign are not limited. This weakness is eliminated in delegation by a warrant
that specifies what kinds of messages are delegated. Here, the original signer uses
the signing algorithm of a standard signature scheme and its secret key to sign
a warrant and generate a signature on the warrant which is called as delegation.
The proxy signer uses the delegation and his/her secret key to create a proxy sig-
nature on behalf of the original signer. According to whether the original signer
can generate a valid proxy signature, proxy signatures can be further classi-
fied into proxy-unprotected and proxy-protected schemes. In a proxy-protected
scheme only the proxy signer can generate proxy signatures, while in a proxy-
unprotected scheme either the proxy signer or the original signer can generate
proxy signatures. In many applications, proxy-protected schemes are required to
avoid the potential disputes between the original signer and the proxy signer.
Related works about proxy signature can be found in [4,12,13,16,17,18,28].

Our contribution
In this paper, we formalize the security models of the convertible undeniable
proxy signatures. The properties Unforgeability, Invisibility and Soundness in
the context of convertible undeniable proxy signatures are clearly defined. We
then present a concrete construction of the convertible undeniable proxy signa-
ture. Our scheme is proxy-protected, even the original signer can not generate a
valid convertible undeniable proxy signature. The validity or invalidity of a proxy
signature can only be verified with the help of the proxy signer. The proxy signer
can decide how to make his proxy signatures publicly verifiable, by releasing an
individual proof or universal proof. The security of our construction is formally
proved in the random oracle models, based on some natural complexity assump-
tions. To the best of our knowledge, our construction is the first convertible
undeniable proxy signature scheme with rigorously proven security.

Paper Organization
The rest of this paper is organized as follows. In Section 2, we recall some fun-
damental backgrounds required throughout the paper. In Section 3, we propose

18 W. Wu et al.

the definition and security models of convertible undeniable proxy signatures. In
Section 4, we provide our concrete convertible undeniable proxy signature scheme
and its security analysis as well. Finally, we conclude our paper in Section 5.

2 Preliminaries

2.1 Bilinear Maps

Let G1 and GT be two groups of prime order q and let g be a generator of G1.
The map e : G1 × G1 → GT is said to be an admissible bilinear map if the
following three conditions hold true:

– e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a, b ∈ ZZq.
– e is non-degenerate, i.e. e(g, g) �= 1GT .
– e is efficiently computable.

We say that (G1,GT) are bilinear groups if there exists the bilinear map
e : G1 ×G1 → GT as above, and e, and the group action in G1 and GT can be
computed efficiently. See [2] for more details on the construction of such pairings.

2.2 Complexity Assumptions

Discrete Logarithm Problem: Given (g, ga) ∈ G, find a.
Computational Diffie-Hellman Problem: Given a triple G elements
(g, ga, gb), find the element C = gab.
3-DecisionalDiffie-Hellman(3-DDH)ProbleminG1:Given (g, ga, gb, gc, h)
∈ G

5
1 for some randomly chosen a, b, c ∈ ZZq, decide whether h ?= gabc.

3 Formal Definitions of Convertible Undeniable Proxy
Signatures

3.1 Outline of Convertible Undeniable Proxy Signatures

The convertible undeniable proxy signature scheme consists of the following al-
gorithms:

CPGen is a probabilistic algorithm, on input a security parameter k, outputs
a string cp which denotes the common scheme parameters including the
message spaceM and the signature space S.

KGen is a probabilistic algorithm, on input a common parameter cp, outputs
the secret/public key-pairs (sk, pk) for the user in the system.

SSign is a probabilistic (deterministic) algorithm, on input the common param-
eter cp, the signer’s secret key sk and the message m to be signed, outputs
the standard signature σs.

Convertible Undeniable Proxy Signatures 19

SVer is a deterministic algorithm, on input the common parameter cp, the
signer’s public key pk, the message-signature pair (m,σs), outputs 1 if it is
a valid message-signature pair. Otherwise, outputs 0.

DGen is a probabilistic algorithm, on input system’s parameter cp, the orig-
inal signer’s secret key sko and the warrant W to be signed, outputs the
delegation σw.

DVer is a deterministic algorithm, on input the common parameter cp, the
original signer’s public key pko, the warrant-delegation pair (W,σw), outputs
1 if it is a valid warrant-delegation pair. Otherwise, outputs 0.

UPSign is a probabilistic algorithm, on input system’s parameter cp, the warrant
W , the delegation σw, the secret key skp of the proxy signer and the message
M to be signed, outputs the undeniable proxy signature σ.

UPVer is a deterministic algorithm, on input the common parameter cp, orig-
inal signer’s public key pko and the proxy signer’s secret/public key-pair
(skp, pkp), the warrant W , the signed message M and the signature σ, out-
puts 1 if it is a valid undeniable proxy signature. Otherwise, outputs 0.

CProtocol is an interactive (non-interactive) algorithm, on input the common
parameter cp, the original signer’s public key pko, the proxy signer’s secret
key skp, (possibly) the verifier V ’s public key pkv, the warrant W , the mes-
sage m and the signature σ, outputs a non-transferable transcript Trans
which can convince V about σ.

DProtocol is an interactive (non-interactive) algorithm, on input the common
parameter cp, the original signer’s public key pko, the proxy signer’s secret
key skp, (possibly) verifier’s public key pkv, the warrant W , the message m
and the signature σ, outputs a non-transferable transcript Trans which can
deny σ to V .

ICon is a probabilistic (deterministic) algorithm, on input the common param-
eter cp, the proxy signer’s secret key skp, the warrant W , the message m
and the signature σ, outputs an individual proof Π(m,σ)

(pkp,W) of this message.
IVer is a deterministic algorithm, on input the common parameter cp, the origi-

nal signer’s public key pko, the proxy signer’s public key pkp, the undeniable
proxy signature tuple (m,W, σ) and the individual proof Π(m,σ)

(pkp,W), outputs
the verification decision d ∈ {Acc,Rej}.

UCon is a deterministic algorithm, on input the common parameter cp and the
proxy signer’s secret key skp, outputs the universal proof Πpkp .

UVer is a deterministic algorithm, on input the common parameter cp, the origi-
nal signer’s public key pko, the proxy signer’s public key pkp, any undeniable
proxy signature tuple (m,W, σ) and the universal proof Πpkp , outputs the
verification decision d ∈ {Acc,Rej}.

3.2 Adversaries and Oracles

We use a non-interactive designated verifier protocol as the CProtocol/DProtocol
when we define the security of a convertible undeniable proxy signature scheme.
Note that if the scheme employs the non-interactive confirmation and disavowal

20 W. Wu et al.

protocols, then it is not necessary to consider the active attack [27]. We allow the
adversary to access the following oracles and submit their queries adaptively:

– KGen Oracle: On a key generation query for the ith user, this oracle runs the
KGen algorithm to generate a secret/public key pair (ski, pki) of this user
and the adversary receives the public key pki.

– SSign Oracle: On a standard sign query (m, pk), this oracle runs the SSign
algorithm to obtain σS and returns it to the adversary.

– UPSign Oracle: On an undeniable proxy sign query (m,W, pko, pkp), this
oracle runs the UPSign algorithm to generate the undeniable proxy signature
σ and returns it to the adversary.

– UPVer Oracle: On a verify query (m,W, σ, pko, pkp) (and possibly pkv), this
oracle first runs the UPVer algorithm to decide whether (m,W, σ) is a valid
undeniable proxy signature tuple under the public keys pko and pkp and
outputs the decision result d ∈ {0, 1}. The adversary receives a transcript
of CProtocol if d = 1. Otherwise, The adversary receives a transcript of
DProtocol.

– ICon Oracle: On an individually convert query (m,W, σ, pkp), this oracle runs
the ICon algorithm to generate the individual proof Π(m,σ)

(pkp,W) and returns it
to the adversary.

– UCon Oracle: On a universally convert query pkp, this oracle runs UCon algo-
rithm to generate the universal proof Πpkp and returns it to the adversary.

– Corruption Oracle: On a corruption query pk, this oracle returns the corre-
sponding secret key to the adversary.

3.3 Completeness

Essentially, completeness means that valid (invalid) signatures can always be
proved valid (invalid). It can be described as following two cases:

1. If the UPVer algorithm outputs 1 for an undeniable proxy signature tuple
(m,W, σ) under the public keys (pko, pkp), then
(a) (m,W, σ) can be confirmed by the CProtocol.
(b) IVer algorithm will output Acc on input (m,W, σ) together with a valid

individual proof Π(m,σ)
(pkp,W).

(c) UVer algorithm will output Acc, on input (m,W, σ) together with a valid
universal proof Πpkp .

2. If the UPVer algorithm outputs 0 for a message-signature pair (m,W, σ)
under the public keys (pko, pkp), then
(a) (m,W, σ) can be denied by the DProtocol.
(b) IVer algorithm will output Rej on input (m,W, σ) together with a valid

individual proof Π(m,σ)
(pkp,W).

(c) UVer algorithm will output Rej on input (m,W, σ) together with a valid
universal proof Πpkp .

Convertible Undeniable Proxy Signatures 21

3.4 Non-transferability

The Non-Transferability requires that the transcript of the CProtocol/DProtocol
with the designated verifier V can only convince V the validity or invalidity of
an undeniable proxy signature tuple (m,W, σ). No one else could be convinced
by this Trans even if V shares all his secret information (including his secret
key) with this party.
The CProtocol/DProtocol is non-transferable if there exists a probabilistic poly-
nomial time algorithm A with input the verifier V ’s secret key skv such that for
any other computationally unbounded verifier ˜V , any tuple (m,W, σ), the tran-
script of the CProtocol/DProtocol generated by A is indistinguishable from that
generated by the proxy signer.

3.5 Unforgeability

The standard notion of the security for digital signatures was defined by Gold-
wasser, Micali and Rivest [10]. In this paper, we use the same way to define the
existential unforgeability of the convertible undeniable proxy signature scheme:
adversary has access to all the oracles defined in Section 3.2. We say F wins if F
outputs a valid undeniable proxy signature tuple (m∗,Wf , σ

∗f) under the origi-
nal signer’s public keys pko and the proxy signer’s public key pkp, such that F
has never issued (m∗,Wf , pko, pkp) to the UPSign Oracle and one of the following
two requirements is satisfied:

1. pkp has never been submitted to the Corruption Oracle.
2. pko has never been submitted to the Corruption Oracle and (Wf , pko) has not

been submitted to the SSign Oracle.

The success probability of an adaptively chosen message and chosen public key
forger F wins the above game is defined as Succ FCMA, CPKA

EUF, CUPS .

Definition 1. We say a convertible undeniable proxy signature scheme is un-
forgeable against a (t, qH , qKG, qSS , qUPS , qV , qIC , qUC , qC) forger FCMA, CPKA

EUF, CUPS ,
ifFCMA, CPKA

EUF, CUPS runs in time at most t, makes at most qH queries to the random or-
acles, qKG queries to KGen Oracle, qSS queries to SSign Oracle, qUPS queries to UP-
Sign Oracle, qV queries to UPVer Oracle, qIC queries to the ICon Oracle, qUC queries
to the UCon Oracle, qC queries to the Corruption Oracle and Succ FCMA, CPKA

EUF, CUPS is
negligible.

3.6 Invisibility

Given an undeniable proxy signature tuple (m,W, σ), the public keys pko of the
original signer and pkp of the proxy signer, the invisibility property requires that
it is difficult to decide whether it is a valid undeniable proxy signature without
the knowledge of the proxy signer’s secret key, the individual proof Π(m,σ)

(pkp,W) or
universal proof Πpkp , even though the adversary knows the secret key sko of
the original signer. It is defined using the games between the oracles defined in
Section 3.2 and an adaptively chosen message attacker and chosen public key
distinguisher DCMA, CPKA

INV, CUPS . The games are divided into two phases.

22 W. Wu et al.

– Phase 1: In this phase, the distinguisher D can adaptively access all the
Oracles.

– Challenge: When the distinguisher D decides the first phase is over, he sub-
mits (m∗,Wf , pko, pkp) to UPSign Oracle as the challenge with the con-
straints that
1. pkp has never been submitted to the Corruption Oracle or UCon Oracle

during Phase 1.
2. (m∗,Wf , pko, pkp) has never been submitted to the UPSign Oracle during

Phase 1.
As a response, the UPSign Oracle chooses a random bit γ ∈ {0, 1}. If γ = 0,
this oracle will run UPSign algorithm to generate the undeniable signature
σ and sets σ∗f = σ. Otherwise, this oracle chooses a random element σ∗f

in the signature space S. Then, this oracle returns the challenging signature
σ∗f to D.

– Phase 2: On receiving the challenging signature, the distinguisher D still can
access the oracles adaptively except that
1. pkp can not be submitted to the Corruption Oracle or UCon Oracle.
2. (m∗,Wf , σ

∗, pkp) can not be submitted to the ICon Oracle.
3. (m∗,Wf , pko, pkp) cannot be submitted to the UPSign Oracle.
4. (m∗,Wf , σ

∗f , pko, pkp) cannot be submitted to the UPVer Oracle.
– Guessing: Finally, the distinguisher D outputs a guess γ′. The adversary wins

the game if γ = γ′.

The advantage of an adaptively chosen message and chosen public key distin-
guisher D has in the above game is defined as Adv DCMA, CPKA

INV, CUPS = |Pr[γ =
γ′]− 1/2|.

Definition 2. We say a convertible undeniable proxy signature scheme is invisi-
ble against a (t, qH , qKG, qSS , qUPS , qV , qIC , qUC , qC) distinguisherDCMA, CPKA

INV, CUPS ,
ifDCMA, CPKA

INV, CUPS runs in time at most t, makes at most qH queries to the random or-
acles, qKG queries to KGen Oracle, qSS queries to SSign Oracle, qUPS queries to UP-
Sign Oracle, qV queries to UPVer Oracle, qIC queries to the ICon Oracle, qUC queries
to the UCon Oracle, qC queries to the Corruption Oracle and Adv DCMA, CPKA

INV, CUPS is
negligible.

Remark: Anonymity is another security requirement of undeniable signatures. It
has been shown in [14] that the property Invisibility and Anonymity are closely
related in the notion of convertible undeniable signatures.

3.7 Soundness

Basically, soundness means that even the proxy signer himself can not convince a
verifier V that a valid (invalid) signature is invalid (valid) without corrupting V ′s
secret key. It is defined by the games against an adversary ˜S who can adaptively
access to all the Oracles defined in Section 3.2. After all the queries, We say
˜S wins the game if ˜S can output (m∗,Wf , σ

∗f , T rans∗, pko, pkp, pkv) with the
restrictions that

Convertible Undeniable Proxy Signatures 23

1. ˜S has never queried pkv to the Corruption Oracle.
2. σ∗f is not a valid undeniable proxy signature of message m∗ under the war-

rant W and the public keys pko, pkp and Trans∗ is a transcripts output
by CProtocol. Or, σ∗f is a valid undeniable proxy signature of message m∗

under the warrantW and the public keys pko, pkp and Trans∗ is a transcript
output by DProtocol.

The success probability of an adaptively chosen message and chosen public key
adversary ˜S wins the above game is defined as Succ ˜SCMA, CPKA

Sound, CUPS .

Definition 3. We say a convertible undeniable proxy signature scheme satisfies
the property of soundness against a (t, qH , qKG, qSS , qUPS , qV , qIC , qUC , qC) ad-
versary ˜SCMA, CPKA

Sound, CUPS , if ˜SCMA, CPKA
Sound, CUPS runs in time at most t, makes at most

qH queries to the random oracles, qKG queries to KGen Oracle, qSS queries to the
SSign Oracle, qUPS queries to UPSign Oracle, qV queries to UPVer Oracle, qIC

queries to the ICon Oracle, qUC to the UCon Oracle, qC queries to the Corruption
Oracle and Succ ˜SCMA, CPKA

Sound, CUPS is negligible.

4 Our Proposed Scheme

In this section we will describe our convertible undeniable proxy signature scheme
with security analysis.

4.1 Concrete Scheme

CPGen: Let (G1,GT) be bilinear groups where |G1| = |GT | = q, for some prime
number q ≥ 2k, k be the system security number and g be the generator of
G1. e denotes the bilinear map G1×G1 → GT . Let h0, h1, h2, h3 : {0, 1}∗ →
G
∗
1, h4 : {0, 1}∗ → ZZq be five secure cryptographic hash functions.

KGen: The original signer O picks xo, yo ∈R ZZ∗q and sets the secret key sko =
(xo, yo). Then O computes the public key pko = (Xo, Yo) = (gxo , gyo). The
proxy signer P picks xp, yp ∈R ZZ∗q and sets the secret key skp = (xp, yp).
Then P computes the public key pkp = (Xp, Yp) = (gxp , gyp). Similarly,
the verifier V ’s secret/public key-pair is (skv, pkv) = (xv, yv, Xv, Yv) where
xv, yv are randomly chosen in ZZ∗q .

SSign: Let m be the message to be signed by the signer whose secret/public
key pair is (x, y,X, Y) = (x, y, gx, gy). The standard signature is generated
as: σs = h0(m)x.

SVer: Given the message m and the standard signature σs, anyone can verify
whether e(σs, g)

?= e(h0(m), X). If the equality holds, outputs 1. Otherwise,
the result is 0.

DGen: Let W be the warrant to be signed by the original signer O who wants
to delegate his signing rights to the proxy signer P . O runs the algorithm
SSign to generate the delegation σw = h0(W)xo . Then O sends the warrant
W and the delegation σw to P .

24 W. Wu et al.

DPVer: Given the warrant W and the delegation σw , the proxy signer P runs
the algorithm SVer to check its validity.

UPSign: For a message m to be signed, let ϑ = m‖pko‖pkp‖W . P chooses a ran-
dom number t in ZZ∗q and computes σ1 = σwh1(ϑ)xpyph2(ϑ)yph3(m||W ||σ2)t =
h0(W)xoh1(ϑ)xpyph2(ϑ)yph3(m||W ||σ2)t and σ2 = gt. The signature is
generated as σ = (σ1, σ2).

UPVer: For a signature σ = (σ1, σ2) on the message m and warrant W , let
ϑ = m‖pko‖pkp‖W . The proxy signer uses his secret key xp, yp to check

if e(σ1, g)
?= e(h0(W), Xo)e(h1(ϑ), gxpyp)e(h2(ϑ), Yp)e(h3(m||W ||σ2), σ2). If

the equality holds, output 1. Otherwise, outputs 0.
CProtocol: Given the verifier V ’s public key pkv = (Xv, Yv), a warrant W ∈
{0, 1}∗, a message m ∈ {0, 1}∗, and a valid signature σ = (σ1, σ2) to be
confirmed, let ϑ = m‖pko‖pkp‖W . The proxy signer P will use the designated
verifier techniques [15] to prove its validity.

– The proxy signer P chooses cv, dv, r ∈R ZZ∗q and computes:
1. A = gr, B = e(h1(ϑ), Xp)r, C = gdvY cv

v .
2. h = h4(m‖W‖σ‖pkv‖A‖B‖C), cs = h−cv (mod q) and ds = r−csyp

(mod q).
P then sends (cs, cv, ds, dv) to the verifier V .

– On receiving (cs, cv, ds, dv), the verifier V computes A′ = gdsY cs
p , B′ =

e(h1(ϑ), Xp)ds [e(σ1, g)/(e(h0(W), Xo)e(h2(ϑ), Yp)e(h3(m||W ||σ2),

σ2))]cs , C′ = gdvY cv
v . Then, V checks whether cs+cv

?= h4(m‖W‖σ‖pkv‖
A′‖B′‖C′). If the equality holds, V will accept σ as a valid undeniable
proxy signature.

DProtocol: Given the verifier V ’s public key pkv = (Xv, Yv), a warrant W ∈
{0, 1}∗, a messagem ∈ {0, 1}∗, and a signature σ = (σ1, σ2) to be disavowed,
let ϑ = m‖pko‖pkp‖W . The proxy signer P will use the designated verifier
techniques [15] to prove its invalidity.

– The proxy signer P chooses cv, dv, r, α, β ∈R ZZ∗q and computes:
1. Z = e(σ1, g)/(e(h0(W), Xo)e(h2(ϑ), Yp)e(h3(m||W ||σ2), σ2)).
2. A = [e(h1(ϑ), Xp)yp/Z]r, B = e(h1(ϑ), Xp)α/Zβ, C = gα/Y β

p , D =
gdvY cv

v .
3. h = h4(m‖W‖σ‖pkv‖A‖B‖C‖D) and cs = h− cv (mod q).
4. ds = α+ csypr (mod q) and ̂ds = β + csr (mod q).

The proxy signer P then sends (A, cs, cv, ds, ̂ds, dv) to the verifier V .
– On receiving (A, cs, cv, ds, ̂ds, dv), V computes

1. Z = e(σ1, g)/(e(h0(W), Xo)e(h2(ϑ), Yp)e(h3(m||W ||σ2), σ2)).
2. B′ = e(h1(ϑ), Xp)ds/(Ẑds ·Acs), C′ = gds/Y

̂ds
p , D′ = gdvY cv

v .

If A �= 1 and cs + cv = h4(m‖W‖σ‖pkv‖A‖B′‖C′‖D′), V will believe σ
is not a valid undeniable proxy signature.

ICon: When the proxy signer wants to make his undeniable proxy signature
tuple (m,W, σ) publicly verifiable, he first runs the algorithm UPVer:

Convertible Undeniable Proxy Signatures 25

– If the algorithm UPVer outputs 1, the proxy signer generates the in-
dividual proof Π(m,σ)

(pkp,W) as follows: it first chooses r ∈R ZZ∗q and com-
putes A = gr, B = e(h1(ϑ), Xp)r, where ϑ = m‖pko‖pkp‖W , cs =
h4(m‖W‖σ‖A‖B), ds = r − csyp (mod q). Then, the proxy signer sets
Π

(m,σ)
(pkp,W) = (cs, ds).

– Otherwise, the algorithm UPVer outputs 0. The proxy signer P chooses
r, α, β ∈R ZZ∗q and computes:

Z = e(σ1, g)/(e(h0(W), Xo)e(h2(ϑ), Yp)e(h3(m||W ||σ2), σ2)),

A = [e(h1(ϑ), Xp)yp/Z]r, B = e(h1(ϑ), Xp)α/Zβ , C = gα/Y β
p , cs =

h4(m‖W‖σ‖pkv‖A‖B‖C), ds = α + csypr (mod q) and ̂ds = β + csr

(mod q). P then sets Π(m,σ)
(pkp,W) = (A, cs, ds, ̂ds).

IVer: For an undeniable proxy signature tuple (m,W, σ) and the individual proof
Π

(m,σ)
(pkp,W),

– If Π(m,σ)
(pkp,W) has the form (cs, ds), the verifier V computes A′ = gdsY cs

p ,
B′ = e(h1(ϑ), Xp)ds [e(σ1, g)/(e(h0(W), Xo)e(h2(ϑ), Yp)e(h3(m||W ||σ2),

σ2))]cs . Then, V checks whether cs
?= h4(m‖W‖σ‖pkv‖A′‖B′). If the

equality holds, V will accept σ as a valid undeniable proxy signature.
– Otherwise, Π(m,σ)

(pkp,W) = (A, cs, ds, ̂ds). V computes

Z = e(σ1, g)/(e(h0(W), Xo)e(h2(ϑ), Yp)e(h3(m||W ||σ2), σ2)),

B′ = e(h1(ϑ), Xp)ds/(Ẑds · Acs), C′ = gds/Y
̂ds
p . If A �= 1 and cs =

h4(m‖W‖σ‖pkv‖A‖B′‖C′), V will believe σ is not a valid undeniable
proxy signature.

UCon: When the proxy signer wants to make all his undeniable proxy signatures
publicly verifiable, he computes Πpkp = gxpyp and publishes Πpkp .

UVer: For any undeniable proxy signature tuple (m,W, σ) and the universal
proof Πpkp , let ϑ = m‖pko‖pkp‖W .

– anyone can check whether e(g,Πpkp) ?= e(Xp, Yp). If this equality holds,
one continues to compute

– Z = e(σ1, g)/(e(h0(W), Xo)e(h2(ϑ), Yp)e(h3(m||W ||σ2), σ2)) and check

Z
?= e(h1(ϑ), Πpkp). If this equality holds as well, one can accept σ as a

valid undeniable proxy signature. Otherwise, it is invalid.

4.2 Security Analysis of the Proposed Scheme

In this section, we will give a formal security analysis of our proposed schemes.

Theorem 1. The proposed scheme satisfies the property Completeness and
Non-Transferability.

26 W. Wu et al.

Proof. It is easy to check our scheme satisfies the definition of the Complete-
ness in Section 3.3. We will show our protocols satisfy the property of Non-
Transferability. Given any undeniable proxy signature tuple (m,W, σ) (either
valid or invalid) and two public keys pko, pkp, the verifier’s secret key skv =
(xv, yv), let ϑ = m‖pko‖pkp‖W . The algorithm A can output the transcripts of
the CProtocol and DProtocol as follows.

1. To simulate a transcript of the confirmation protocol which is designated to
V , A randomly chooses cs, ds ∈ ZZq, r ∈ ZZ∗q and computes

Z = e(σ1, g)/(e(h2(ϑ), Yp)e(h0(W), Xo)e(h3(m||W ||σ2), σ2)),

A = gdsY cs
p , B = e(h1(ϑ), Xp)dsZcs and C = gr. Then A computes cv =

h4(m‖W‖σ‖pkv‖A‖B‖C)− cs (mod q) and dv = r− cvyv (mod q). At last,
A outputs (cs, cv, ds, dv) as the transcript of the confirmation protocol.

2. To simulate a transcript of the disavowal protocol which is designated to V ,
A chooses a random element A ∈ GT such that A �= 1. A continues to choose
four random elements cs, ds, ̂ds ∈ ZZq, r ∈ ZZ∗q and computes

Z = e(σ1, g)/(e(h2(ϑ), Yp)e(h0(W), Xo)e(h3(m||W ||σ2), σ2)),

B = e(h1(ϑ), Xp)ds/(Ẑds ·Acs), C = gds/Y
̂ds
p and D = gr. Then V computes

cv = h4(m‖W‖σ‖pkv‖A‖B‖C‖D)− cs (mod q) and dv = r− cvyv (mod q).
At last, A outputs (A, cs, cv, ds, ̂ds, dv) as the transcript of the disavowal
protocol.

Due to the random numbers chosen by A, the transcripts generated by A are
indistinguishable from those generated by the proxy signer P .

Theorem 2. If there exists a (t, qH , qKG,qSS , qUPS , qV , qIC , qUC , qC) forger
FCMA, CPKA

EUF, CUPS can win the game defined in Section 3.5 with non-negligible suc-
cess probability Succ FCMA, CPKA

EUF, CUPS , then there exists an algorithm A who can
use F to solve a random instance of Computational Diffie-Hellman problem
with probability SuccCDH

A,G1
≥ 4

(qSS+qUP S)2 (1 − 2
qUP S+qSS+2)qSS+qUP S+2 2

qKG
(1 −

1
qKG

)qC Succ FCMA,CPKA
EUF,CUPS in polynomial time.

Proof. Due to the page limitation, please refer to the full version of this paper.

Theorem 3. If there exists a (t, qH , qKG, qSS , qUPS , qV , qIC , qUC , qC) distin-
guisher DCMA, CPKA

INV, CUPS who can have non-negligible advantage Adv DCMA, CPKA
INV, CUPS

in the game defined in Section 3.6, then there exists an algorithm A
who can use D to solve a random instance of 3-Diffie-Hellman prob-
lem with advantage Adv A3−DDH

G1
= 1

qKG(qUPS)2 (1 − 1
qUP S+1)2(qUP S+1)(1 −

1
qKG

)qUC+qC Adv DCMA,CPKA
INV,CUPS in polynomial time.

Convertible Undeniable Proxy Signatures 27

Proof. Due to the page limitation, please refer to the full version of this paper.

Theorem 4. If there exists a (t, qH , qKG, qSS , qUPS , qV , qIC , qUC , qC) adversary
˜SCMA, CPKA

Sound, CUPS can win the game defined in Section 3.7 with non-negligible success
probability Succ ˜SCMA, CPKA

Sound, CUPS , then there exists an algorithm A who can use
˜S to solve a random instance of Discrete Logarithm problem with probability
SuccDL

A,G1
≥ 1

qKG
(1− 1

qKG
)qC Succ ˜SCMA,CPKA

Sound, CUPS in polynomial time.

Proof. Due to the page limitation, please refer to the full version of this paper.

5 Conclusion

In this paper, we proposed the first convertible undeniable proxy signature
scheme with formal security analysis. The signature for a message consists of
two elements in the group G1, which is only around 340 bits when appropriate
elliptic curve is used. We provided a formal security analysis to show that our
scheme satisfies the properties of Unforgeability, Invisibility and Soundness in
the random oracle models.

Acknowledgement

The authors would like to thank the anonymous referees of the 8th International
Workshop on Information Security Applications (WISA 2007) for the suggestions
to improve this paper.

References

1. Boyar, J., Chaum, D., Damg̊ard, I.B., Pedersen, T.P.: Convertible Undeniable Sig-
natures. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 189–205. Springer, Heidelberg (1991)

2. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

3. Boyar, J., Chaum, D., Damgard, I.B., Pedersen, T.P.: Convertible Undeniable Sig-
natures. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 189–205. Springer, Heidelberg (1991)

4. Boldyreva, A., Palacio, A., Warinschi, B.: Secure Proxy Signature Schemes for
Delegation of Digning Rights, http://eprint.iacr.org/2003/096

5. Chaum, D., Antwerpen, H.v.: Undeniable Signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

6. Damg̊ard, I.B., Pedersen, T.P.: New Convertible Undeniable Signature Schemes. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer,
Heidelberg (1996)

7. Galbraith, S.D., Mao, W., Paterson, K.G.: RSA-Based Undeniable Signatures for
General Moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 200–217.
Springer, Heidelberg (2002)

http://eprint.iacr.org/2003/096

28 W. Wu et al.

8. Galbraith, S.D., Mao, W.: Invisibility and Anonymity of Undeniable and Confirmer
Signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer,
Heidelberg (2003)

9. Gennaro, R., Krawczyk, H., Rabin, T.: RSA-Based Undeniable Signatures. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 132–149. Springer,
Heidelberg (1997)

10. Goldwasser, S., Micali, S., Rivest, R.: A Digital signature scheme secure against
adaptively chosen message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

11. Gennaro, R., Rabin, T., Krawczyk, H.: RSA-Based Undeniable Signatures. Journal
of Cryptology 13(4), 397–416 (2000)

12. Huang, X., Mu, Y., Susilo, W., Zhang, F., Chen, X.: A short proxy signature
scheme: Efficient authentication in the ubiquitous world. In: Enokido, T., Yan, L.,
Xiao, B., Kim, D., Dai, Y., Yang, L.T. (eds.) Embedded and Ubiquitous Computing
– EUC 2005 Workshops. LNCS, vol. 3823, pp. 480–489. Springer, Heidelberg (2005)

13. Huang, X., Susilo, W., Mu, Y., Wu, W.: Proxy Signature without Random Oracles.
In: Cao, J., Stojmenovic, I., Jia, X., Das, S.K. (eds.) MSN 2006. LNCS, vol. 4325,
pp. 473–484. Springer, Heidelberg (2006)

14. Huang, X., Mu, Y., Susilo, W., Wu, W.: Provably Secure Pairing-based Convertible
Undeniable Signature with Short Signature Length. In: International Conference on
Pairing-based Cryptography (Pairing 2007), Tokyo, Japan, July 2-4, 2007. LNCS,
Springer, Heidelberg (to appear, 2007)

15. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their
Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

16. Kim, S., Park, S., Won, D.: Proxy Signatures, Revisited. In: Han, Y., Quing, S.
(eds.) ICICS 1997. LNCS, vol. 1334, pp. 223–232. Springer, Heidelberg (1997)

17. Lee, J.-Y., Cheon, J.H., Kim, S.: An analysis of proxy signatures: Is a secure channel
necessary? In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 68–79. Springer,
Heidelberg (2003)

18. Lee, B., Kim, H., Kim, K.: Secure mobile agent using strong nondesignated proxy
signature. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp.
474–486. Springer, Heidelberg (2001)

19. Libert, B.: Jean-Jacques Quisquater. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS,
vol. 2964, pp. 112–125. Springer, Heidelberg (2004)

20. Lyuu, Y.-D., Wu, M.-L.: Convertible Group Undeniable Signatures. In: Lee, P.J.,
Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 48–61. Springer, Heidelberg
(2003)

21. Laguillaumie, F., Vergnaud, D.: Time-Selective Convertible Undeniable Signatures.
In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 154–171. Springer,
Heidelberg (2005)

22. Mambo, M., Usuda, K., Okamoto, E.: Proxy signature: Delegation of the power to
sign messages. IEICE Trans. Fundamentals E79-A(9), 1338–1353 (1996)

23. Miyazaki, T.: An Improved Scheme of the Gennaro-Krawczyk-Rabin Undeniable
Signature System Based on RSA. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015,
pp. 135–149. Springer, Heidelberg (2001)

24. Michels, M., Petersen, H., Horster, P.: Breaking and Repairing a Convertible Un-
deniable Signature Scheme. In: Third ACM Conference on Computer and Com-
munications Security, pp. 148–152. ACM Press, New York (1996)

Convertible Undeniable Proxy Signatures 29

25. Monnerat, J., Vaudenay, S.: Undeniable Signatures Based on Characters: How
to Sign with One Bit. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 69–85. Springer, Heidelberg (2004)

26. Monnerat, J., Vaudenay, S.: Short 2-Move Undeniable Signatures. In: International
Conference on Cryptology in Vietnam 2006. LNCS, Springer, Heidelberg (to ap-
pear)

27. Ogata, W., Kurosawa, K., Heng, S.-H.: The Security of the FDH Variant of Chaums
Undeniable Signature Scheme. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386,
pp. 328–345. Springer, Heidelberg (2005)

28. Park, H.-U., Lee, I.-Y.: A digital nominative proxy signature scheme for mobile
communications. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS,
vol. 2229, pp. 451–455. Springer, Heidelberg (2001)

29. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (2000)

30. Shamir, A.: Identity-based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

31. Wang, G., Qing, S., Wang, M., Zhou, Z.: Threshold Undeniable RSA Signature
Scheme. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229,
pp. 221–232. Springer, Heidelberg (2001)

32. Zhang, F., Safavi-Naini, R., Susilo, W.: Attack on Han et al.’s ID-based Confirmer
(Undeniable) Signature at ACM-EC 2003, http://eprint.iacr.org/2003/129

http://eprint.iacr.org/2003/129

Secret Signatures: How to Achieve Business

Privacy Efficiently?

Byoungcheon Lee1,�, Kim-Kwang Raymond Choo2,��, Jeongmo Yang1,
and Seungjae Yoo1

1 Department of Information Security, Joongbu University
101 Daehak-Ro, Chubu-Myeon, Geumsan-Gun, Chungnam, 312-702, Korea

{sultan,jmyang,sjyoog}@joongbu.ac.kr
2 Australian Institute of Criminology

GPO Box 2944, Canberra ACT 2601, Australia
raymond.choo@aic.gov.au

Abstract. Digital signatures provide authentication and non-repudia-
tion in a public way in the sense that anyone can verify the validity of
a digital signature using the corresponding public key. In this paper, we
consider the issues of (1) signature privacy and (2) the corresponding
public provability of signature. We propose a new digital signature vari-
ant, secret signature, which provides authentication and non-repudiation
to the designated receiver only. If required, the correctness of the secret
signature can be proven to the public either by the signer or the receiver.
We conclude with a discussion to demonstrate the usefulness of the pro-
posed cryptographic primitive (e.g., achieving signature privacy in an
efficient manner).

Keywords: Secret signature, signature privacy, public provability, key
agreement, anonymity, public auction.

1 Introduction

Digital signature, first proposed by Diffie and Hellman in 1976 [11], is an elec-
tronic version of handwritten signatures for digital documents. A digital signa-
ture on some message, m, is generated by a signer, A, using a secret signing key,
skA. The correctness of the generated signature is verified using the correspond-
ing public key, pkA. It provides authentication and non-repudiation in a public
way, in the sense that anyone can verify the validity of the digital signature,
since pkA is public information.
� This work was supported by Korea Research Foundation Grant funded by Korea

Government (MOEHRD, Basic Research Promotion Fund), grant No. KRF-2005-
003-D00375.

�� The views and opinions expressed in this paper are those of the author and do not
reflect those of the Australian Government or the Australian Institute of Criminol-
ogy. This research was not undertaken as part of the author’s work at the Australian
Institute of Criminology.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 30–47, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Secret Signatures: How to Achieve Business Privacy Efficiently? 31

Signature Privacy. In this paper, we consider a business scenario where both
the sender (signer) and the receiver (verifier) wish to keep their exchanged sig-
natures private – we term this signature privacy. Such a (signature privacy)
property does not appear to be easily achieved using general digital signature
schemes. A ‘straightforward’ approach would be to encrypt a digital signature
with the receiver’s public key (or with an agreed key) so that only the legitimate
receiver can decrypt and retrieve the original signature. This is the so-called
sign-then-encrypt approach, which is widely adopted in the real world. In or-
der to implement the signature and encryption operations in a more efficient
manner, signcryption [26] was proposed in 1997 by Zheng. Alternative solutions
to achieve signature privacy include using special signature schemes that limit
the verifiability of the signature only to a designated entity (e.g., the designated
verifier signature (DVS) [6,15] and the limited verifier signature (LVS) [1,9]).

Public Provability of Signature. Assume that we use a signature scheme
designed to provide signature privacy. In the event that a dispute arises between
a signer and a receiver during a business transaction, any chosen third party
(e.g., a judge or the public) should be able to prove the correctness of the digital
signature. We term such a property the public provability of a signature. This
property can be easily achieved using either general digital signature schemes
(i.e., by verifying the signature using the signer’s public key) or the sign-then-
encrypt schemes (i.e., by decrypting the encrypted signature and verifying the
retrieved signature in a standard way). In the latter sign-then-encrypt approach,
proving the correctness of decryption is a computationally expensive operation
(e.g., include zero-knowledge proofs).

If we use signature schemes designed to provide signature privacy, then the
public provability of generated signatures becomes an important requirement
to ensure the fairness of business transactions. Although signcryption schemes
appear to provide such a public provability feature, the original authors have not
specified (this feature) explicitly. DVS and LVS schemes. DVS and LVS schemes,
on the other hand, are unable to provide the public provability feature, since
the designated verifier cannot transfer his conviction to others as the designated
verifier is able to open the signature in any way of his choice using the knowledge
of his/her private key.

Our approach. In this paper, we introduce a new digital signature variant,
secret signature (SS), designed to provide signature privacy. Advantages of our
proposed SS scheme include providing all the following properties efficiently:

1. Authenticity and non-repudiation;
2. Signature privacy; and
3. Public provability of signature.

More specifically, in our proposed SS scheme:

– A signer, A, computes a signature using A’s private key together with the
public key of a receiver, B.

– B can then verify the signature using B’s private key and A’s public key.

32 B. Lee et al.

– Given a (signed) message, no one other than the designated receiver can
identify the message’s authorship (e.g., what message is signed by whom
and addressed to whom).

– If required, either A or B can provide a proof of validity of the signature.
Given the proof of validity, any third party will be able to verify the validity
of the associated signature.

To obtain the above-mentioned functionalities, we combine a secure signature
scheme with a non-interactive one-way key agreement scheme between a signer
and a receiver. In other words, our proposed SS can be viewed as a signature
on a message and a secret agreed key. The designated receiver can recover the
secret agreed key and verify the signature, but no third party can identify what
message is signed by whom and addressed to whom.

Secret signature is useful in many real-world applications where

1. the privacy of the generated signature needs to be maintained, but the au-
thorship of the signature can be publicly proven at a later stage,

2. message confidentiality is not required, and
3. efficiency is critical.

A main distinction between our proposed SS scheme and general signcryption
schemes1 is that SS scheme provides signature privacy without using encryption.
Thus it is more efficient than signcryption in many applications where mes-
sage confidentiality is not required. We describe some application examples in
Section 7.
Outline. We define the proposed SS scheme and provide security definitions
in Section 2. In the following section, a concrete construction example of SS
in discrete logarithm (DL)-based cryptosystems and the security proofs in the
random oracle model are presented. We then present a brief discussion on how
to prove the validity of SS in Section 4. We compare the features of SS with
previously published signature privacy-related schemes in Section 5 and compare
the efficiency of SS with signcryption in Section 6. Several possible applications
are presented in Section 7. Section 8 concludes this paper.

2 Definitions

2.1 Definition of Secret Signature Scheme

There are two entities in the SS scheme, namely, a signer (sender), A, and a
verifier (receiver), B. The formal definition of SS scheme is as follows.

Definition 1 (Secret Signature Scheme). A secret signature (SS) scheme
consists of the following six algorithms.

1 In this paper, we do not consider various features provided by different variants of
the signcryption scheme (e.g., [10] and [17]).

Secret Signatures: How to Achieve Business Privacy Efficiently? 33

1. Setup : params← SS.SetUp(1k).
A probabilistic algorithm, SS.SetUp, which takes a security parameter, k, as
input and outputs the public parameters, params.

2. Key Generation : (pk, sk)← SS.KeyGen(params).
A probabilistic algorithm, SS.KeyGen, which takes the public parameters,
params, as input and outputs a pair (pk, sk) of matching public and private
keys. For example, the public/private key pairs of the signer and receiver,
(pkS , skS) and (pkR, skR), are generated using SS.KeyGen.

3. Signing : (V, seed)← SS.Sign(params,m, skS , pkR).
A probabilistic algorithm, SS.Sign, run by the signer, which takes as input
the public parameters, params, a plaintext message, m ∈ {0, 1}∗, signer’s pri-
vate key, skS, and receiver’s public key, pkR; and outputs a secret signature,
V and the random seed which was used to compute the signature. Signer has
to keep seed secretly by himself.

4. Verification : result← SS.V erify(params, V,m, pkS , skR).
A deterministic algorithm, SS.V erify, run by the receiver, which takes as
input the public parameters, params, a secret signature, V , a plaintext mes-
sage, m, the signer’s public key, pkS, and receiver’s private key, skR, and
outputs result. If V is a valid secret signature, then result = valid, otherwise,
result = invalid. If correct signature V = SS.Sign(params,m, skS , pkR)
is tested, the verification result SS.V erify(params, V,m, pkS , skR) �→ result
should be valid.

5. Public Proving
A probabilistic algorithm that is run by either the signer or the receiver to
prove the validity of the secret signature to public.
Run by the signer : proofS ← SS.Proof.Signer(params, V, seed).

SS.Proof.Signer which takes as input required parameters, params, the
signer’s random seed used to compute the secret signature, and the secret
signature, V , and outputs a proof, proofS.

Run by the receiver : proofR ← SS.Proof.Receiver(params, V, skR).
SS.Proof.Receiver which takes as input required parameters, params,
the secret signature, V , and the receiver’s private key, skR, and outputs
a proof, proofR.

6. Public Verification : result← SS.PubV erify(params,m, V, pkS, pkR, proof).
A deterministic algorithm, SS.PubV erify, which takes as input the pub-

lic parameters, params, a message m, a secret signature, V , the public keys
of the signer and the intended receiver, and the validity proof proof (either
proofS or proofR), and outputs a verification result, result (either valid or
invalid).

2.2 Security Definitions

Informally we consider the following security requirements for the proposed SS
scheme described in Definition 1.

Correctness. If a secret signature is generated by following the protocol cor-
rectly, then the result of the verification always return valid.

34 B. Lee et al.

Unforgeability. Anyone except the signer can have a non-negligible advantage
in forging a secret signature.

Non-Repudiation. The signer is unable to repudiate the generation of a se-
cret signature that the signer has previously generated. If unforgeability is
provided, then non-repudiation is obtained consequently.

Signature Privacy. The secret signature generated by the signer is verifiable
only by the designated receiver. No other entity except the signer and the
receiver is able to have a non-negligible advantage in distinguishing the secret
signature. Signature privacy is defined in terms of invisibility.

Public Provability. The validity of the signature can be proven to public by
the signer or the verifier, if the need arises.

To define the unforgeability and non-repudiation more formally, we recall the
widely accepted security notions on digital signatures, unforgeability against
chosen-message attacks. In order to provide non-repudiation, we would like to
prevent the forgery of A’s signature without knowledge of A’s signing key, except
with negligible probability. As shown in the seminal paper of Diffie and Hellman
[11], the security of such a scheme in the public key setting typically depends on
the existence of a one-way function. A formalized and widely accepted security
notion for digital signature was introduced by Goldwasser, Micali, and Rivest
[14], which they term existential unforgeability under adaptive chosen-message
attack (EF-ACMA).

However, in our proposed SS scheme, there are two inputs: the message to be
signed and the intended recipient’s public key. Hence, we extend the standard
security definition to the existential unforgeability under the adaptive chosen-
message chosen-receiver attack (EF-ACMCRA) in which the attacker is allowed
to query secret signatures to the signing oracle for any chosen message and
receiver’s public key adaptively. An unforgeability of secret signature can be
defined in terms of the following unforgeability game.

Game Unforgeability: Let F be a forger and k be a security parameter.

1. (Initialization) First, params ← SS.SetUp(1k) is executed and the signer’s
key pair (pkS , skS)← SS.KeyGen(params) is computed. pkS is given to F .

2. (Training) F is allowed to ask a series of SS.Sign queries for any combination
of message m and receiver’s public key, pkR, chosen by F to the signing
oracle. To do this, F computes (pkR, skR)← SS.KeyGen(params), and asks
secret signature to the signing oracle by sending (m, pkR, skR). Then the
signing oracle provides valid secret signatures V .

3. (Output) F outputs a pair (m′, pk′R, sk
′
R, V

′) as a forgery of a secret signature
on message m′ from the signer S to a receiver R′.

F wins the game if valid ← SS.V erify(params, V ′,m′, pkS , sk
′
R) and the tu-

ple (m′, pk′R, sk
′
R, V

′) has never been queried to SS.Sign. In this definition of
unforgeability we assume that receiver’s key pair is known to F and the signing
oracle. Without the knowledge of receiver’s private key the signing oracle cannot

Secret Signatures: How to Achieve Business Privacy Efficiently? 35

simulate secret signature and F cannot verify the validity of received secret sig-
nature. Since the main concern of the unforgeability game is the unforgeability
of signer’s signature, this assumption is reasonable.

Definition 2. (Unforgeability) A secret signature scheme is said to be secure in
the sense of existential unforgeability under the adaptive chosen-message chosen-
receiver attack (EF-ACMCRA), if no probabilistic, polynomial-time (PPT) forger,
F , can have a non-negligible advantage in Game Unforgeability.

Signature privacy requires that a given secret signature is a private information
between the signer and the receiver. Any other entity cannot distinguish a secret
signature from a random string in a signature space. Signature privacy can be
defined in terms of the following invisibility game.

Game Invisibility: Let D be a distinguisher. First, params ← SS.SetUp(1k)
is executed and the signer’s key pair (pkS , skS)← SS.KeyGen(params) is com-
puted. pkS is given to D. Let (pkR, skR)← SS.KeyGen(params) be the receiver’s
key pair. pkR is given to D. At some point D outputs a message m′ and requests
for a challenge secret signature V ′ to the challenger C. The challenge V ′ is gener-
ated by C based on the outcome of a hidden coin toss b. If b = 1, V ′ is generated
by running SS.Sign. If b = 0, V ′ is chosen randomly in the signature space. At
the end of the game, D outputs a guess b′. D wins if b = b′ and the tuple (m′, V ′)
has never been queried to SS.Sign.

In this invisibility game, receiver’s private key skR is hidden from D, since D
is not the designated receiver. The designated receiver can distinguish the secret
signature using his private key.

Definition 3. (Invisibility) A secret signature scheme is said to provide in-
visibility, if no probabilistic, polynomial-time distinguisher, D, can have a non-
negligible advantage in Game Invisibility.

2.3 General Implementation

The underlying intuition behind the general implementation of the proposed SS
schemes is to combine a secure signature scheme and a non-interactive one-way
key agreement. We denote the signer as A and the intended receiver as B.

Key agreement. Assume that A wants to send a secret signature for a message
m to B. Using a non-interactive one-way key agreement scheme A generates
an agreed secret (session) key, K, using B’s public key, pkB. For example,
in DL-based cryptosystems, A chooses a random seed rA and computes an
agreed key K = pkrA

B = gxBrA = (grA)xB .
Signing. A generates a signature, V , by signing m||K with A’s signing key,

skA. We can interpret V as a secret signature for the message m that is
privately shared between A and B, since no one else should be able to verify
V without knowledge of K.

36 B. Lee et al.

Verification. B is able to compute the shared key using his private key and,
hence, verify the secret signature. Any entity other than the signer and
intended receiver cannot compute K, thus cannot determine the validity of
the signature, even cannot tell what message was signed by whom to which
receiver.

Note that signatures on the same message generated by the same signer for
the same receiver will differ from one session to another due to the additional
session key component in the generation of the secret signature. Also the session
key K provides a binding between the signature and the recipient, thus the same
signature cannot be used for other recipient.

We remark that we mainly focus on the signature privacy, rather than the
message confidentiality. Depending on the requirement of the applications, the
nature in which the actual message is exchanged can be sent in clear, sent in
ciphertext, or does not need to be sent (implicitly known to the receiver).

3 DL-Based Implementation of Secret Signature Scheme

The proposed SS scheme can be implemented using different public key cryptosys-
tems (e.g., identity-based cryptosystems). In this section, we present an imple-
mentation example of the SS scheme in the discrete logarithm-based setting.

1: Setup
We assume common system parameters (p, q, g) where p and q are large
primes satisfying q|p − 1 and g is an element of order q in Z

∗
q . We then

require a secure cryptographic hash function, H : {0, 1} �→ Zq, which we
will model as a random oracle [4]. For readability, we will omit the modulo
p in our subsequent equations, if it is clear. Let ∈R denote uniform random
selection.

2: Key Generation
A signer A has a long-term certified key pair (xA, yA), where xA ∈R Z

∗
q and

yA = gxA . A receiver B has a long-term certified key pair (xB , yB), where
xB ∈R Z

∗
q and yB = gxB .

3: Signing
Let m denote the message to be signed. The signer, A, selects a random
seeds rA ∈R Z

∗
q . Using rA, A now computes U = grA and the key to be

shared with the verifier, W = yrA

B . A computes V = rA + xAH(m,U,W). A
sends the secret signature, 〈m,U, V 〉, to the intended receiver, B.

4: Verification
The receiver, B, uses his private key, xB, to compute the exchanged key
chosen by the signer, W = UxB . B then verifies V by gV ?= U · yH(m,U,W)

A . If
V verifies correctly, then B knows that the message is indeed signed by A.

5: Public Proving
The validity of secret signature 〈m,U, V 〉 is proven to public either by the
signer or the receiver. In this stage we consider the following two cases ac-
cording to the information revealed.

Secret Signatures: How to Achieve Business Privacy Efficiently? 37

Signer A Receiver B

2. Key Generation
xA ∈R Z

∗
q , yA = gxA xB ∈R Z

∗
q , yB = gxB

3. Signing
rA ∈R Z

∗
q

U = grA ; W = yrA
B

V = rA + xAH(m, U, W)
〈m,U, V 〉−−−−−−−−−−−−−−−−→

4. Verification
W = UxB

gV ?
= U · yH(m,U,W)

A

5. Public Proving
(1) Expose W (1) Expose W = UxB

(2) Prove the validity of W (2) Prove the validity of W

6. Public Verification

gV ?
= U · yH(m,U,W)

A

Fig. 1. DL-based implementation

(1) Message proving. If the receiver information needs not be exposed,
just reveal W . With the additional information, W , anyone can verify
that (U, V) is a correct signature of the signer A for the message m and
W . If only message proving is required, it is very efficient.

(2) Receiver proving. If the receiver information needs to be proven, re-
veal W and prove its correctness with respect to the receiver’s pub-
lic key. Its validity can be proven by the signer or the receiver either
non-anonymously (using the general proof) or anonymously (using the
anonymous proof) which will be described in Section 4.

6: Public Verification
Given W which is proven to be correct, anyone can verify the validity of the
secret signature by checking gV ?= U · yH(m,U,W)

A .

We prove the security of our scheme assuming the intractability of the discrete
log problem and also in the random oracle model (ROM).

Theorem 1. The proposed SS scheme is EF-ACMCRA secure (in the sense of
Definition 2) in the random oracle model under the assumption that the discrete
logarithm problem is intractable.

38 B. Lee et al.

Proof Sketch. Since the proposed SS scheme is a ElGamal family signature
scheme, Forking lemma [21,20] can be applied. We assume that there exists
a forger F (described in Definition 2) that can forge a secret signature in time
t(k) with a non-negligible advantage ε(k). In the training stage F can ask signing
queries for any combination of message and receiver pair to the signing oracle
and receive correct secret signatures from the signing oracle. The challenger C
controls all communication of F and simulate the signing queries.

The signing algorithm uses a hash function which is modeled by an random
oracle under the random oracle model. For each signing query (M, yR, xR) given
by F , C picks random integers a, b ∈R Z∗q and computes

U ← gayb
A, W ← UxR , h← −b, V = a.

C gives h as a random oracle answer to the H(m,U,W) query and (U, V) as the
signature for (M, yR, xR) signing query. Then this simulated signatures can pass
F ’s signature verification and are indistinguishable from the real signatures.

The remaining proof is the same as the case for the original Schnorr signature.
The discrete logarithm problem can be solved in time t′(k) with advantage ε′(k)
where

t′(k) ≈ {2(t(k) + qHτ) +OB(qSk3)}/ε(k), ε′(k) ≈ q−0.5
H

where qS and qH are the numbers of signing queries and hash oracle queries,
respectively, and τ is time for answering a hash query. If a successful forking is
found, signer’s private key xA can be computed, which contradicts the discrete
logarithm assumption. 	

Theorem 2. The proposed SS scheme provides signature privacy (invisibility)
in the sense of Definitions 3 under the random oracle model, if the decisional
Diffie-Hellman (DDH) problem is intractable.

The proof for Theorem 2 generally follows that of Galbraith and Mao [13]. We
assumes that there exist an adversary D, who can gain a non-negligible advan-
tage in distinguishing the signatures in the game outlined in Definition 3. We
now construct another algorithm, DDDH , to break the decisional Diffie–Hellman
(DDH) problem using D.

4 Proving the Validity of Secret Signature

In the public proving stage, the signer or the receiver prove the validity of secret
signature to a judge or public. Once the proof is given, anyone can verify the
validity of secret signature and non-repudiation is provided. Here we consider
the following two cases.

General Proof. In this protocol, the identity of the entity (signer or receiver)
who proves the validity of the SS is revealed, since the signer’s proof and the
receiver’s proof are distinguishable.

Secret Signatures: How to Achieve Business Privacy Efficiently? 39

Anonymous Proof. As the name suggests, the identity of the entity who
proves the validity of the SS is not revealed, since the signer’s proof and
the receiver’s proof are indistinguishable. However, this proof is computa-
tionally more expensive than that of the general proof.

4.1 General Proof Protocol

In this protocol, either the signer, A, or the receiver, B, reveals the shared key
W and proves its validity using the proof outlined in Appendix A.

– The signer A proves ZKP (rA) : (logg U = logyB
W = rA) using his knowl-

edge of rA.
– The receiver B proves ZKP (xB) : (logg yB = logU W = xB) using his

knowledge of xB.

It is easy to see that the proofs initiated by the signer and the receiver are
distinguishable, hence the identity of the entity who had exposed the secret
signature is revealed.

4.2 Anonymous Proof Protocol

There might exist situations where we are unable to reveal the identity of the
entity who exposed the secret signature, perhaps, due to privacy or legal re-
strictions. In such cases, we cannot employ the general proof protocol presented
above. Here we show how the signer or the receiver can prove the validity of
secret signature anonymously without revealing their identity.

Note that the tuple 〈g, U, yB,W 〉 has the special relations depicted in
Figure 2. The signer knows rA(= logg U = logyB

W) and the receiver knows
xB(= logg yB = logU W).

The anonymous proof protocol can be initiated either by A or by B. They ex-
pose the shared key W = yrA

B = UxB = grAxB and demonstrate their knowledge
of the corresponding secret information as follows.

ZKP (rA ∨ xB) : (logg U = logyB
W = rA) ∨ (logg yB = logU W = xB).

It is a OR combination of two zero-knowledge proofs of the equality of two
discrete logarithms described in Appendix B. A or B is able to prove the validity
of W by using their knowledge of rA or xB.

Signer knows rA

g −−−−−−−−−−−−−−−−→ U = grA

Receiver
knows xB

⏐

⏐

�

⏐

⏐

�

yB = gxB −−−−−−−−−−−−−−−−→W = UxB = gxBrA

Fig. 2. Special relations of the tuple 〈g,U, yB, W 〉

40 B. Lee et al.

Although these two proofs by the signer and the receiver are computed differ-
ently, any public verifier is unable to distinguish whether the proof is provided
by the signer or the receiver. If one of the party opens the secret signature anony-
mously, the other partner know that no one other than the partnering entity has
opened the secret signature. However, the party is unable to prove that the other
partnering entity has opened the secret signature. From the public’s perspective,
the identity remains anonymous.

5 Comparison of Features

Several signature variants found in the literature also provide signature-privacy-
related functionalities. We now compare these schemes with our proposed SS
scheme.

Sign-then-encrypt approach: Although this approach provides signature pri-
vacy property, it has the following disadvantage. Once the receiver decrypt
the encrypted signature and obtain the corresponding publicly verifiable sig-
nature, the message is no longer linkable to the receiver. Thus the receiver or
any third party can use it for malicious purposes. On the other hand, this is
not the case in our SS scheme as the (special) signature generated by a signer
is given to a specific receiver.

Undeniable signature [8] and designated confirmer signature [5]: In the
former scheme, the recipient has to interact with the signer to be convinced
of its validity whilst in the latter scheme, the signatures has to be verified
by interacting with an entity, the confirmer, designated by the signer. Both
signature schemes require an interactive protocol to carry out signature veri-
fication. In our proposed SS scheme only a simple and computationally cheap
algorithm is required to carry out the signature verification.

Nominative signature [16] scheme: This scheme allows a nominator (signer)
and a nominee (verifier) to jointly generate and publish the signature in such
a way that only the nominee can verify the signature and if necessary, only
the nominee can prove to a third party that the signature is valid. Although
signature privacy can be achieved using this scheme, it requires an interactive
protocol for the signing stage. In our proposed SS scheme, a signer is able to
generate the signature on his/her own.

Designated Verifier Signature (DVS) scheme: This scheme, independen-
tly proposed by Jakobsson, Sako, and Impagliazzo [15]2 and Chaum [6] in
1996, provides signature privacy. Although the designated verifier can be
convinced of the validity of the signature in the DVS scheme, the verifier
is unable to transfer the conviction to any other entity. A major difference
between our proposed SS scheme and the DVS scheme is that the latter is
unable to provide public provability of the signature.

Limited Verifier Signature (LVS) scheme: This scheme, first proposed by
Araki, Uehara, and Imamura in 1999 [1], differs from the DVS scheme in that

2 Lipmaa, Wang, and Bao [19] pointed out a weakness in this DVS scheme [15].

Secret Signatures: How to Achieve Business Privacy Efficiently? 41

the limited verifier is able to transfer the proof to convince another entity (e.g.,
a judge) if the signer has violated some rule non-cryptographically. Such a
proof is, however, not transferrable to a third entity. In 2004, Chen et. al. pro-
posed a convertible limited verifier signature scheme in a pairing-based setting
[9]. Their scheme allows the limited verifier signature to be transformed into
a publicly verifiable signature. This converted limited verifier signature, how-
ever, is rather loosely related to the limited verifier any more since the limited
verifier is unable to prove that he is the intended recipient of the converted sig-
nature. On the other hand in our proposed SS scheme, any receiver can prove
publicly that he is the legitimate receiver of the corresponding signature.

Anonymous signature scheme: First proposed by Yang et al. [25], this
scheme appears to have similar property. However, the anonymous signature
scheme provides signer anonymity and does not have an intended receiver
when the signature is generated. We will provide an example in Section 7 to
better explain this difference.

Signcryption scheme [26]: This scheme, first proposed by Zheng in 1997, is
perhaps most similar to our proposed SS scheme. The signcryption scheme
is built from a clever combination of a secure encryption scheme and a se-
cure signature scheme, providing both confidentiality and non-repudiation.
Many extensions of the signcryption scheme have also been proposed (e.g.,
[2,3,18,22,23]3). Signcryption provides signature privacy by encrypting the
message. However, this is computationally expensive particularly for appli-
cations that do not require message confidentiality. SS is a new approach to
provide signature privacy without encryption.

At first read, our proposed SS scheme might be confused with other previously
published signature privacy-related signature schemes. However, if we refer to
the definition of SS scheme given in Definition 1, it is clear that:

– The undeniable signature scheme differs from the SS scheme since interactive
protocol between the signer and the verifier is required in the signature
verification algorithm.

– DVS and LVS schemes differ from the SS scheme since public provability
cannot be achieved.

– Convertible LVS scheme differs from the SS scheme since the converted sig-
nature is not related with the receiver in any way.

– The anonymous signature scheme differs from the SS scheme since the sig-
nature does not have an intended receiver when the signature is generated
whilst in our proposed SS scheme, an intended receiver is required at the
time of signature generation.

On the other hand, the signcryption scheme is most similar to our proposed SS
scheme if the public proving/verification algorithms are further defined.

3 The signcryption scheme of Libert and Quisquater [18] is shown to be insecure [24].

42 B. Lee et al.

6 Comparison of Efficiency

Since the signature-privacy-related signature schemes presented in Section 5 –
with the exception of the signcryption scheme – have rather different function-
alities, we will restrict our comparison only to the signcryption scheme. Since
public proving/verification protocols were not defined in the original signcryp-
tion scheme, we assume that similar zero-knowledge proof techniques are applied
in order to facilitate our comparison. Note that both the general and anonymous
proofs are also possible in the signcryption scheme.

For completeness, we now describe briefly how the general and anonymous
proofs are possible in Zheng’s signcryption scheme. To prove the correctness of
signcryption, either the signer or the receiver has to compute and reveal the
following information (we use the same notation as the original paper).

– The signer, A, has to keep the random number, x, used in the signcryption
secret. A has to compute and reveal yx

b and gx (requires 1 extra E). In this

case, the public verifier has to check whether gx ?= grsys
a holds (requires 2E).

– The receiver, B, has to compute and reveal gx = grsys
a and yx

b = (gx)xb

(requires 3E).

Now, using the general proof protocol, the signer can then prove ZKP (x) :
(logg g

x = logyb
yx

b = x) and the receiver can prove ZKP (xb) : (logg yb =
loggx yx

b = xb), which requires 2E for proof and 4E for verification. Anonymous
proof is also possible for the 〈g, gx, yb, y

x
b 〉 tuple, which requires 6E for proof and

8E for verification.
Some of the computations required by the signer in our scheme can be per-

formed offline (i.e., before the message to be sent and the receiver are known),
such as U = grA , and hence, provides efficiency. In Table 1, we compare the
efficiency of our scheme with Zheng’s signcryption scheme. The notation used
in Table 1 is as follows: E and Eoff denotes online and offline modular expo-
nentiations, respectively; and ED denotes the cost for symmetric encryption or

Table 1. Summary of efficiency analysis

Signcryption [26] Proposed SS scheme

Signing 1E + 1ED 1E + 1Eoff

Verification 2E + 1ED 3E

General proof Proof 3E 2E
by signer Verification 6E 4E

General proof Proof 5E 2E
by receiver Verification 4E 4E

Anonymous proof Proof 7E 6E
by signer Verification 10E 8E

Anonymous proof Proof 9E 6E
by receiver Verification 8E 8E

Public verification 1ED 2E

Secret Signatures: How to Achieve Business Privacy Efficiently? 43

decryption. For simplicity, we ignore modulo multiplication/division operations
and hash operations in our comparison.

Compared with Zheng’s signcryption, our proposed SS scheme is more efficient
both in the actual signature scheme and the public proving. Since the SS scheme
does not use symmetric encryption, it is more efficient than signcryption, espe-
cially with long message when message confidentiality is not required. In public
proving, the same zero-knowledge proofs can be used. In signcryption, however,
both the signer and receiver have to compute and reveal additional information.
All required information is already included in the generated signature in the SS
scheme. Therefore, the SS scheme is more efficient than signcryption when used
in business transactions that do not require confidentiality of messages.

7 Applications of Secret Signatures

The proposed SS scheme can be used as an important cryptographic primitive to
achieve business privacy, providing both signature privacy and public provability
of signature efficiently.

Secret signature is useful in many applications where (1) the privacy of gen-
erated signature needs to be maintained, but the authorship of the signature
can be publicly proven at a later stage, (2) message confidentiality is not very
important, and (3) efficiency is critical.

We now describe some possible application examples.

Application 1: Private Business Transaction

Let’s assume that two business entities, A and B, wanting to exchange some
not-so-confidential contract document, m (e.g., m can be constructed using open
source information). Although the contents of m do not need to be confidential,
both A and B do not want to reveal to other entities that they had signed m.
By using the proposed SS scheme, both A and B are assured that no third party
is aware that m has been signed. In the event that one of the entities violates a
non-cryptographic business rule, the other entity can prove the validity of their
private contract to a third party by opening the generated secret signature. The
public provability property guarantees the fairness of private business.

Application 2: Public Auction

We consider an application is a public auction (or English auction) setting
where bidding prices are published and the bidders are allowed to bid prices
anonymously as frequently as desired. When the winner is finally decided, the
anonymity of the winning bid is revealed and the correctness of the winning bid
should be proven publicly (to provide public verifiability). This is a typical ex-
ample where message confidentiality is not required, but signature privacy and
public provability are required.

To provide the anonymity of bid with public provability, we can use the pro-
posed SS scheme. In the bidding stage, bidders bid their prices using a secret

44 B. Lee et al.

signature with the auctioneer as a receiver. For example, let A be the auctioneer,
Bi be bidders, and pj be the bidding prices. Bidder Bi computes

si,j = SS.Sign(params, pj , skBi , pkA), ki,j = EpkA(Bi),

and posts 〈pj , si,j , ki,j〉 on the bulletin board, where ki,j is an encrypted ID
information of the bidder (can be decrypted only by the auctioneer). In the
winner announcement stage, the auctioneer opens the highest price bid and
proves the correctness of secret signature. Any misbehavior of the auctioneer or
bidders can be proven publicly. Note that bidder anonymity was achieved easily
without using any encryption. Also note that threshold cryptography can be
used by the auctioneer such that pkA is distributed to multiple auctioneers and
bidder information of the losing bids is kept secret.

Application 3: Paper Submission System

Consider a paper submission system for a conference. In this case submitted
papers should be anonymous while they need not be encrypted. Authors need
to commit the following facts to the program chair with a signature; (1) the
submitted paper is their authentic work, (2) the submitted paper is not submit-
ted in parallel to another conference or journal, (3) the authors will present the
paper if accepted, and etc. Upon receiving the submission, the program chair
has to issue a receipt for the submitted paper to the author.

In such an application, the authors and the conference program chair can ex-
change secret signatures with the other entity as a receiver (or publish the secret
signature on the bulletin board as a public commitment). If general signatures
are exchanged, anonymity will be broken (since anyone can verify the authorship
of the submitted paper using the respective public keys). In the unlikely event
of a dispute between the program chair and an author at a later stage, it can be
resolved easily by using the public proving feature of secret signature.

One may note that the generated secret signature is tightly bound to the
recipient, the program chair of the conference. Hence, the same signature can-
not be submitted to another recipient, the program chair of another conference.
Therefore, if it was subsequently discovered that the same paper with two differ-
ent signatures was submitted to two different conferences in parallel, the author
cannot repudiate his misbehavior. However, this is not the case for Yang et al.’s
[25] anonymous signature scheme; the generated signature is not bound to any
recipient. The signer is able to repudiate that someone other than the signer has
forwarded the signature and the paper to the program chair of another confer-
ence without the signer’s knowledge.

8 Conclusion

We had discussed the signature privacy issue and introduced a new signature
variant, which we termed secret signature (SS). The SS scheme provides sig-
nature privacy and public provability of signature in an efficient manner by

Secret Signatures: How to Achieve Business Privacy Efficiently? 45

combining secure signature schemes and non-interactive one-way key agreement
schemes. Although this is a very simple concept, it is a useful and efficient cryp-
tographic tool to achieve business privacy.

We then presented a concrete implementation example of secret signature in
discrete logarithm-based cryptosystems. Future extension of this work includes
implementing the SS scheme in other cryptosystems such as RSA-based and
pairing-based cryptosystems.

Acknowledgement

The second author would like to thank Sherman SM Chow for pointing out
references [10] and [17].

References

1. Araki, S., Uehara, S., Imamura, K.: The Limited Verifier Signature and its Appli-
cations. IEICE Transactions E82-A(1), 63–68 (1999)

2. Baek, J., Steinfeld, R., Zheng, Y.: One-time Verifier-based Encrypted Key Ex-
change. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98.
Springer, Heidelberg (2002)

3. Bao, F., Deng, R.H.: A Signcryption Scheme with Signature Directly Verifiable by
Public Key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59.
Springer, Heidelberg (1998)

4. Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm For Design-
ing Efficient Protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York
(1993)

5. Chaum, D.: Undeniable Signatures. In: De Santis, A. (ed.) EUROCRYPT 1994.
LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)

6. Chaum, D.: Private Signature and Proof Systems. United States Patent 5,493,614
(1996)

7. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

8. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

9. Chen, X., Zhang, F., Kim, K.: Limited Verifier Signature Scheme from Bilinear
Pairings. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089,
pp. 135–148. Springer, Heidelberg (2004)

10. Chow, S.S.M., Yiu, S.M., Hui, L.C.K., Chow, K.P.: Efficient Forward and Provably
Secure ID-Based Signcryption Scheme with Public Verifiability and Public Cipher-
text Authenticity. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 352–369. Springer, Heidelberg (2004)

11. Diffie, W., Hellman, M.: Multiuser Cryptographic Techniques. In: AFIPS 1976
National Computer Conference, pp. 109–112. AFIPS Press (1976)

12. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

13. Galbraith, S.D., Mao, W.: Invisibility and Anonymity of Undeniable and Confirmer
Signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer,
Heidelberg (2003)

46 B. Lee et al.

14. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

15. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their
Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
321–331. Springer, Heidelberg (1996)

16. Kim, S.J., Park, S.J., Won, D.H.: Zero-Knowledge Nominative Signatures, pp. 380–
392 (1996)

17. Li, C.K., Yang, G., Wong, D.S., Deng, X., Chow, S.S.M.: An Efficient Signcryption
Scheme with Key Privacy. In: EuroPKI 2007. LNCS, vol. 4582, pp. 78–93. Springer,
Heidelberg (2007)

18. Libert, B., Quisquater, J.-J.: Efficient Signcryption with Key Privacy from Gap
Diffie-Hellman Groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 187–200. Springer, Heidelberg (2004)

19. Lipmaa, H., Wang, G., Bao, F.: Designated Verifier Signature Schemes- Attacks,
New Security Notions and a New Construction. In: Welzl, E., Montanari, U., Rolim,
J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 459–471. Springer, Heidelberg
(2000)

20. Mao, W.: Modern Cryptography: Theory and Practice. Prentice-Hall, Englewood
Cliffs (2003)

21. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13, 361–396 (2000)

22. Shin, J.-B., Lee, K., Shim, K.: New DSA-Verifiable Signcryption Schemes. In: Deng,
R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 35–47.
Springer, Heidelberg (2002)

23. Steinfeld, R., Zheng, Y.: A Signcryption Scheme Based on Integer Factorization.
In: Okamoto, E., Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp.
308–322. Springer, Heidelberg (2000)

24. Yang, G., Wong, D.S., Deng, X.: Analysis and Improvement of a Signcryption
Scheme with Key Privacy. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC
2005. LNCS, vol. 3650, pp. 218–232. Springer, Heidelberg (2005)

25. Yang, G., Wong, D.S., Deng, X., Wang, H.: Anonymous Signature Schemes. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958,
Springer, Heidelberg (2006)

26. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost (Signature) + Cost (Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 1165–1793. Springer, Heidelberg (1997)

A Proving the Equality of Two Discrete Logarithms

Let α and β be two independent generators of order q in modular p. A prover
P tries to prove to a verifier V that two numbers a = αx and b = βx have the
same exponent without exposing x. We denote this proof as

ZKP (x) : (logα a = logβ b = x).

Based on the scheme by Chaum and Pedersen [7] and Fiat-Shamir’s heuristics
[12] the non-interactive proof can be done as follows.

Secret Signatures: How to Achieve Business Privacy Efficiently? 47

ZKP (x) : (logα a = logβ b = x)

– Proof: Prover P randomly chooses t from Z
∗
q and computes c = αt and

d = βt. He computes h = H(α, β, a, b, c, d) and s = t + hx, then sends
(c, d, s) to the verifier. Proof requires two exponentiation operations.

– Verification: Verifier V first computes h = H(α, β, a, b, c, d). Then he checks
αs ?= cah and βs ?= dbh. Verification requires four exponentiation operations.

B OR Proving the Equality of Two Discrete Logarithms

Let α1, β1, α2, β2 be four independent generators of order q in modular p.
A prover P tries to prove to a verifier V that either logα1

a1 = logβ1
b1(= x1)

or logα2
a2 = logβ2

b2(= x2) holds using his knowledge of x1 or x2 without
exposing it. It is an OR combination of two proofs for the equality of two discrete
logarithms. We denote this proof as

ZKP (x1 ∨ x2) : (logα1
a1 = logβ1

b1 = x1) ∨ (logα2
a2 = logβ2

b2 = x2).

The prover knows either x1 or x2, but does not know them all. This proof can
be done as follows.

ZKP (x1 ∨ x2) : (logα1
a1 = logβ1

b1 = x1) ∨ (logα2
a2 = logβ2

b2 = x2)

– Proof: Assume that the prover P knows xb and does not know xb′ .
• Randomly chooses rb, sb′ , tb′ from Z

∗
q .

• Computes cb = αrb

b , db = βrb

b , cb′ = α
sb′
b′ a

tb′
b′ , db′ = β

sb′
b′ b

tb′
b′ (incurring six

exponentiation operations).
• Computes t = H(α1, β1, α2, β2, a1, b1, a2, b2, c1, d1, c2, d2).
• Computes tb = t − tb′ and sb = rb − tbxb, then sends (c1, d1, c2, d2, s1,
t1, s2, t2).

– Verification: Verifier V checks
• c1 ?= αs1

1 a
t1
1 , d1

?= βs1
1 b

t1
1 , c2

?= αs2
2 a

t2
2 , d2

?= βs2
2 b

t2
2 and

• t1 + t2
?= H(α1, β1, α2, β2, a1, b1, a2, b2, c1, d1, c2, d2).

Implementation of BioAPI Conformance Test

Suite Using BSP Testing Model

Jihyeon Jang1, Stephen J. Elliott2, and Hakil Kim1

1 School of Information & Communication Engineering, Inha University
jhjang@vision.inha.ac.kr, hikim@inha.ac.kr

2 Department of Industrial Technology, Purdue University
elliott@purdue.edu

Abstract. The purpose of this paper is to design a Conformance Test
Suite(CTS) for BSPs(Biometric Service Provider) based upon the
BioAPI (Biometric Application Programming Interface) v2.0, an inter-
national standard by ISO/IEC JTC1/SC37. The proposed BioAPI CTS
enables users to test BSPs without depending on various frameworks.
In this paper, a test scheduling tool has been embodied in order to use
Test Assertion with XML. In order to demonstrate the performance of
the CTS, the experiment was performed using both commercial finger-
print verification and identification BSPs. The developed CTS will be
installed at Korean National Biometrics Test Center and used to test
whether commercial biometrics products are compliant to BioAPI.

Keywords: BioAPI, Conformance Test Suite, Biometric Service Pro-
vider.

1 Introduction

Biometrics recognition technology is rapidly developing with numerous biomet-
rics products entering the marketplace, and are becoming pervasive in some
areas. Each vendor develops biometrics products in different technical schemes,
and the market suffers from the problem of ‘One-Vendor Solution,’ which means
that end user’s system becomes dependent on a particular vendor’s solution and
nearly impossible to upgrade by other vendor’s solution. This problem is caused
by the lack of standards in biometrics technology. Numerous studies have been
conducted to overcome the problem of ‘One-Vendor Solution’, thus, the need for
a standardized interface of biometrics products has increased.

Since the establishment of ISO/IEC JTC1/SC37 in 2002, the standardization
of biometrics technology has been actively progressed. One of the most important
standards for biometrics is ISO 19784-1, BioAPI Specification (Biometric Ap-
plication Programming Interface - Part 1: Specification). This standard defines
the Application Programming Interface and Service Provider Interface (SPI) for
standard interfaces within a biometric system consisting of components from
multiple vendors. Commercial products are required to be compliant to this
standard, hence, need to be tested for conformance.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 48–60, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Implementation of BioAPI Conformance Test Suite 49

The Conformance Test Suite (CTS) is a means of identifying whether a
product satisfies a corresponding standard. Once certified by the CTS, the prod-
uct is deemed interoperable with standard-compliant devices manufactured by
other vendors. The previous versions of BioAPI CTS initially developed by Korea
Information Security Agency (KISA) in 2003 [1-3] and by NIST in 2006[4], were
based on BioAPI v1.1 proposed by the Biometrics Consortium [5]. These versions
indirectly tested whether BSPs (Biometric Service Provider) were compliant to
the standard, using the consortium’s BioAPI framework which is a middleware
infrastructure between BioAPI compliant applications and BSPs. The problem
with these previous versions is that when an error occurs, the CTS cannot find
whether it originated from the BSP under test or from the framework.

In order to resolve the problem stated above, this study develops a new BioAPI
CTS in the following technical aspects. Firstly, the new CTS which is based on
BioAPI v2.0 standards [6] is able to test BSPs without the BioAPI framework.
Secondly, it can load various test procedures arbitrarily designed depending on
the purpose of the test. Thirdly, the new CTS report the test results in XML
format. Finally, it is implemented to test each BSP differently, depending on the
purpose of the BSP.

The following section introduces the conformance test methods and models.
The third section describes the design and implementation of the proposed CTS.
The forth section concludes this paper and discusses further works.

2 Conformance Test Suite for BioAPI: Methods and
Models [7]

Conformance test is defined as an evaluation of whether a developed product
meets standard requirements. That is, it must provide a message to inform the
vendor that the usage form of a product is incorrect or it is omitted items of
standards specifications. Accordingly, the CTS must be composed so that it can
evaluate whether a product appropriately applies the standard.

2.1 Conformance Testing Methods

As presented in Fig. 1, the conformance test of BioAPI is divided into a Function
Test, to evaluate BioAPI functions, and a Scenario Test, to evaluate whether the
BSP functions perform correctly. The function test evaluates whether mandatory
and optional functions conform to the standard. If a function subject to be tested
is called, function mapping proceeds in the framework and the BSP function is
implemented through the relevant SPI (Service Provider Interface) function.
The return values on each function implemented in the BSP are delivered to
an application, and the result is output through test log after the performance
process is finished. All BSPs support basic component management, handle,
event and utility operations. The callback, database and BioAPI unit operations
are optional. Second, the scenario test is a method of evaluating whether the
BSP is capable of calling successive functions prescribed by the standard. The
processes of the three types of scenario test are defined as the following.

50 J. Jang, S.J. Elliott, and H. Kim

Fig. 1. Test method structure for conformance test

Handling Scenario

When a BSP creates a new BIR (Biometric Information Record), it returns a
“handle” to it. The majority of local operations can be performed without mov-
ing the BIR out of the BSP. However, if the application is required to manage
the BIR, it can acquire the BIR using the handle. In order to test the BIR cre-
ation function, it is mandatory to run BioAPI Capture prior to running other BIR
functions because it needs the biometric image. After the image is captured using
BioAPI Capture, the handling process is carried out by the BIR handle function.

Fig. 2. Test scenario for BIR handling

Verification Scenario

he verification process matches the biometric template with an input image, where
it compares the similarity. For verification, first the BSP or application should
capture, and then determine the match/non-match with a stored template.

Implementation of BioAPI Conformance Test Suite 51

The Enrollment process should be tested before the Verification process. The
verification process addresses the testing of whether BioAPI Verify and BioAPI
Identify are called and BioAPI Enroll is called. Using BioAPI Caputer, an image
is captured, the image process is carried out by the BioAPI Process. Identification
work is achieved with BioAPI IdentifyMatching. This step is descried in Fig. 3.

Fig. 3. Test scenario for verification process

Fig. 4. Test scenario for identification process

52 J. Jang, S.J. Elliott, and H. Kim

Identification Scenario

The identification process matches the entire stored template with input image,
where it determines the best match. To verify the identification function, the
following functions are required. For identification, first the BSP or application
should capture, and then determine the match/non-match.

The Enrollment process is tested before the Identification process. The Iden-
tification process addresses the testing of whether BioAPI Verify and BioAPI
Identify are called after BioAPI Enroll is called. After the image is captured
using BioAPI Capture, the image process is carried out with BioAPI Process.
Identification work is conducted by BioAPI IdentifyMatching.

2.2 Conformance Testing Models

The conformance testing model is based on a variation of the basic BioAPI ar-
chitecture. The basic BioAPI architecture is described as being comprised of a
normal BioAPI application, BioAPI framework, and one or more normal BioAPI
BSPs. The conformance testing methodology specified in the BioAPI specifica-
tion, addresses each of the standard components of the BioAPI architecture
separately. Three conformance testing models are defined the methodology, for
the testing of each standard component.

Fig. 5. Conformance testing model for BioAPI application

Implementation of BioAPI Conformance Test Suite 53

Applications Testing Component Model

As presented in Fig. 5, in the conformance testing model for BioAPI applications,
the application-testing framework is inserted between the application under test
and a normal framework. This testing component shall implement the BioAPI
standard interface on one side and the application callback interface on the
other side. As a result, it shall appear to the application as a framework, and
to a framework as an application. This testing component shall have the ability
to relay application calls to the normal framework. The framework calls the
application during testing, and the ability to observe, analyze, log the flow of
incoming calls, and generate extra calls are tested.

Framework Testing Component Model

Fig. 6 presents the conformance testing model for BioAPI frameworks, the
framework-testing application replaces the normal application, and framework-
testing BSP shall replace the normal BSP. These two testing components lie
in the framework for testing. The framework-testing application shall imple-
ment the application callback interface, and the framework-testing BSP shall
implement the BioSPI interface. Therefore, the framework being tested cannot
distinguish between these interfaces and the corresponding components. In addi-
tion, each testing component contains a special testing interface, enabling them
to interact with each other for the purpose of performing tests.

Fig. 6. Conformance testing model for BioAPI frameworks

54 J. Jang, S.J. Elliott, and H. Kim

Fig. 7. Conformance testing model for BioAPI BSPs

BSP Testing Component Model

As presented in Fig. 7, in the conformance testing model for BioAPI BSPs, the
BSP-testing application shall replace the normal application and the normal
framework. This testing component shall act both as a BioAPI application and
BioAPI framework, and shall implement the framework callback interface. As a
result, it appears as a framework to the BSP being tested. The testing component
shall be able to make calls to the BioSPI interface of the BSP under testing.

3 Implementation of CTS for BioAPI BSP

The previous CTS indirectly tested whether BSPs were compliant to the stan-
dard, using the Biometrics Consortium’s BioAPI framework. However, when the
CTS discovers an error, it does not distinguish whether they originate from
the BSP under test or the BioAPI framework. Therefore, the new version of
the CTS developed in this paper implements the BSP testing component model
as shown in Fig. 7. The testing mechanism of the new CTS based on BioAPI
v2.0 is illustrated in Fig. 8.

In order to resolve the above problem, the following four functions are newly
implemented in the comparison with the previous versions of CTS. Firstly, the

Fig. 8. Mechanism of the BioAPI v2.0 CTS

Implementation of BioAPI Conformance Test Suite 55

Table 1. Summary of BioAPI conformant BSPs

Fig. 9. Testing scheduling of BioAPI v2.0 CTS

new CTS is capable of testing a BSP which does not abide by the framework on
the basis of the BioAPI v2.0 standards.Secondly, it can load arbitrarily designed
test procedures by the test scheduler. The test scheduler will be replaced by a
test assertion loader in the next version of the BioAPI CTS when ISO 24709-2,
BioAPI Conformance Testing - Part 2: Test Assertions for BSPs [8] becomes an

56 J. Jang, S.J. Elliott, and H. Kim

international standard. Fig. 9 depicts the implementation of the test scheduler.
Thirdly, the new CTS produces the test results in XML format which is the
standard format for both the input and the output to the BioAPI CTS in ISO
24709-2. Finally, it is implemented to test each BSP differently, depending on
the purpose of the BSP, for example, verification or identification. The following
Table 1 is a summary of BioAPI conformant BSPs.

4 Experimental Results

In order to evaluate the operation of implemented BioAPI CTS, this paper
tested BioAPI v2.0 with three commercial fingerprint recognition BSPs. Two
tests of the BSPs were modules for verification [9, 10], and the others were for
identification [11]. The BioAPI function and the associated BSPs are shown in
Table 2.

Fig. 10 presents the process of performing the BSP conformance test for fin-
gerprint recognition. When the test is completed, the result is found in an XML

Table 2. Conformance of test BSPs

Implementation of BioAPI Conformance Test Suite 57

Fig. 10. Process of performing the BSP conformance test

test result, as shown in Table 3. If a BioAPI function exists in the BSP, the
message of BioAPI OK is returned, while if it does not exist or is not performed
normally, an error code is returned [6].

The result of BSP conformance test is provided in XML format, as shown
in Table 3. However, BSPs tested in this paper only provided functions neces-
sary for verification and identification, so it could not be confirmed whether the
implemented CTS would operate properly with a BSP which provides all the
functions defined in BioAPI v2.0. Thus, a sample BSP was developed, and all
the functions of BioAPI were tested to simulate a full CTS experiment. Table 4
contains the results of two experiments, firstly, over three commercial BSPs for
fingerprint recognition, and secondly, a test BSP developed in this study in or-
der to test all the BioAPI functions. These experiments demonstrate that the
BioAPI CTS performs properly over the BSPs supplied by manufactures. At the
same time, it is recognized that the BSPs under test are compliant to BioAPI
v2.0 standards.

58 J. Jang, S.J. Elliott, and H. Kim

Table 3. Test Log of sample BSP

Implementation of BioAPI Conformance Test Suite 59

Table 4. Test result of sample BSPs

60 J. Jang, S.J. Elliott, and H. Kim

5 Conclusions and Future Works

This paper designs and implements a conformance testing suite for BioAPI v2.0.
The improved CTS can operate without the BioAPI frameworks. The weakness
of the previous versions of BioAPI CTS was that they could not tell whether any
test failure originates either from the BSP under test or from the BioAPI frame-
work. The new BioAPI CTS is designed to be able to test BSPs and frameworks
independently. The performance of the new BioAPI CTS was demonstrated by
testing commercial fingerprint verification and identification BSPs.

The developed BioAPI CTS will make the process of manufacturing standard
biometrics products with less expense in shorter period of time. In addition,
the biometrics products compliant to international standards will promote the
interoperability among different vendor’s products and consequently enlarge the
biometrics market worldwide.

The current BioAPI CTS uses XML only for outputting the test results. For
further progress, XML will be used for writing scripts of test scenario and a parser
of XML test-scripts needs to be developed in order to make the conformance-
testing process more flexible.

Acknowledgments. This work was supported in part by the Korea Small and
Medium Business Administration.

References

1. Korea Information Security Agency, Development of test technology for Korea
BioAPI Standard (2002)

2. Korea Information Security Agency, A Study on Improvement of Conformance Test
Suite Tool for Application Interface of Biometric System (2003)

3. Lee, Y.-Y., Kwon, Y.-B.: A Study on Conformance Testing Methods to Verify
the BioAPI Based System Module. Korea Information Processing Society B 11(7),
759–768 (2004)

4. http://www.itl.nist.gov/div893/biometrics/BioAPI CTS/index.htm

5. Biometric Consortium, BioAPI Specification Version 1.1 (2001)
6. ISO/IEC IS 19784-1, Information Technology - Biometric application programming

interface - Part 1: BioAPI specification
7. ISO/IEC FDIS 24709-1, Information Technology - Conformance Testing for BioAPI

- Part 1: Methods and Procedures
8. ISO/IEC FDIS 24709-2, Information Technology - Conformance Testing for BioAPI

- Part 2: Test Assertions for Biometric Service Providers
9. SecuTronix, http://www.secutronix.com/

10. Suprema, http://www.supremainc.com/
11. Digent, http://www.digent.co.kr/

http://www.itl.nist.gov/div893/biometrics/BioAPI_CTS/index.htm
http://www.secutronix.com/
http://www.supremainc.com/
http://www.digent.co.kr/

Information Hiding in Software with Mixed

Boolean-Arithmetic Transforms

Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson

Cloakware Inc., USA
{yongxin.zhou,alec.main,yuan.gu,harold.johnson}@cloakware.com

Abstract. As increasingly powerful software analysis and attack tools
arise, we need increasingly potent software protections. We generate
an unlimited supply of obscuring transforms via mixed-mode computa-
tion over Boolean-arithmetic (mba) algebras corresponding to real-world
functions and data. Such transforms resist reverse engineering with ex-
isting advanced tools and create np-hard problems for the attacker. We
discuss broad uses and concrete applications to aacs key hiding and
software watermarking.

1 Introduction

With the increasing power of software analysis and attack tools and the ubiquity
of open operating systems, ever stronger software data- and algorithm-hiding
mechanisms are essential. (For existing protections, see, e.g., [3,4,5,6,7,10,18,21].)

We introduce Boolean-arithmetic (ba) algebras which model real-world soft-
ware computation. Modern alus use (1) 2’s complement arithmetic on n-bit
words, which maps to the modular ring Z/(2n), and (2) bitwise operations over
Bn where B = {0, 1}. Combining (1) and (2) gives the ba-algebra BA[n], over
which we define highly simplification-resistant mixed Boolean-arithmetic (mba)
obfuscating transforms with np-hard fragment recognition, for which we pro-
vide unlimited-volume generators, ensuring an ever-growing mba protections
database.

mba transforms based on mba expressions, mba identities and invertible func-
tions can be used to transform software code: functionality is preserved, but se-
cret constants, intermediate values, and algorithms are hidden from static and
dynamic reverse engineering and analysis. Perimeter software protection meth-
ods, that ultimately allowed the data or algorithm to appear in memory cannot
provide a similar level of protection.

Moreover, transformed software simultaneously occupies multiple mathemati-
cal domains, creating worst-case np-hard problems for the attacker, and making
them highly resistant even to advanced analytical tools such as MapleTM or
MathematicaTM. The unlimited supply of mba transforms can be generated
ensuring an ever-growing search space to protect against new tools for analyzing
and attacking transformed software.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 61–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

62 Y. Zhou et al.

We provide practical threat scenarios. We then introduce mba transforms
and their use for protection against such threats. Lastly, we provide practical
examples of transformed algorithms.

2 Motivating Scenarios

2.1 Näıve Code

In Fig. 1(A)’s scenario, both algorithm and constant data C are unprotected,
permitting algorithmic reverse engineering by static analysis and extraction of
C by searching the executable file.

This is the normal state of software as written, compiled, and delivered.

2.2 Hiding Constants from Static Analysis

Hiding C in code gives us Fig. 1(B). The algorithm is still exposed to static
analysis, but C (created at runtime) no longer appears in the executable file.

This (without mba methods) was the situation in the Advanced Access Con-
trol System (aacs: see Fig. 2), a copy protection system adopted for hd-dvdTM

and BluRayTM optical discs, which was hacked[22] by various parties by ini-
tially obtaining the title key, Kt, from memory, then working back through the
chain to obtain earlier keys from memory, such as the media key, Km. Since the
algorithms are public, obtaining the keys allows for off-line decryption of the
licensed content by an application that does not comply with licensing terms
(e.g. writes decrypted content to a file). Obtaining the higher level keys allows
the others to be calculated, making the memory-key-extraction step simpler. As
in Fig. 1(B), while the software manufacturers made an effort to hide the device
keys, they did not prevent intermediate values from appearing in memory.

2.3 Hiding Constants and Algorithms from Dynamic Analysis

Finally, in Fig. 1(C)’s scenario, we protect the value of C and its associated code
by applying code and data transforms[3,10,21]. The constant code generates
CT (C under transformation T) with corresponding changes to the algorithm.
Even if a dynamic attack recovers CT , an attacker must reverse-engineer of
the transformed algorithm to find T . E.g. if C is a cryptographic key, offline
decryption is infeasible until T is found or the algorithm code is lifted, but
transform diversity[21] makes lifting less useful. Moreover, lifting could be made
difficult if the code surrounding decryptions were mathematically intermixed
with the decryptions using mba transforms.

Example: AACS. The above is the approach we would recommend for systems
such as aacs: using mba transforms would ensure that only transformed key
values appear in memory or registers during computation, with a transform not
useful for offline decryption without significant additional analysis.

Information Hiding in Software with Mixed Boolean-Arithmetic Transforms 63

C

Algorithm Code

Program

Input(y, y , ... , y1 m)

z, z , ... , zOutput(1 n)

(A)

C

Constant Code

Algorithm Code

z, z , ... , zOutput(1 n)

Input(y, y , ... , y1 m)

Program

(B) Input(y, y , ... , y1 m)

CT

Constant Code

Algorithm Code

Program

z, z , ... , zOutput(1 n)

(C)

Fig. 1. Basic Scenarios

A possible attack point would be to compare known title keys (obtained from
previously hacked titles) with the corresponding transformed keys. To render
such an attack ineffective, the transformation must be sufficiently complex that
determining its functionality from such isolated plain-key-to-transformed-key in-
stances is infeasibly hard for the system’s anticipated attackers.

HD−DVD
Volume ID

AESG
Kvu

AES
Decrypt

Encrypted
Key

Kt

AES
Decrypt

Encrypted
Content

Km

Device
Keys &
Process
MKB
Algorithm

HD−DVD
MKB

Content

AACS

Fig. 2. AACS

Example: Software Watermarking. Another possible use for key and algo-
rithm hiding is software watermarking in order to prove ownership of the software
or intellectual property contained therein if the software is used without a license.
Software watermarking is not to be confused with steganographic watermarking,
where a message is hidden images or an audio or video stream, although some
systems (e.g., drm systems) permit both forms of protection to be used (soft-
ware watermarking for drm components, steganographic watermarking for the
content they manage).

64 Y. Zhou et al.

P (I)

if I =
K = E

= K then
(K)

W =
output W

else

emit_watermark (P , K)

Q:

Fig. 3. Watermarking

In §4.2, we will provide a simple example where software function is dependent
on a secret keyK which can be used to prove software ownership. mba transforms
effectively protect the software watermark algorithm by making it very hard to
discover K and by interlocking (see §3.4) the constant code producing K and
the watermark algorithm (see Fig. 3).

3 Mixed Boolean-Arithmetic (MBA) Transforms

3.1 Basic Definitions

Microprocessor arithmetic logic units (alus) use arithmetic operations including
addition +, subtraction − (whence comparisons <,≤,=,≥, >), multiply · , left
shift �, arithmetic right shift �s, and logical right shift �. Bitwise operations
include exclusive-or ⊕, inclusive-or ∨, and ∧, and not ¬. With n-bit 2’s comple-
ment integers, arithmetic operations are in integer modular ring Z/(2n). Bitwise
operations operate over Boolean algebra (Bn,∧,∨,¬). All above computations
are captured in the ba-algebra, BA[n].

Definition 1. With n a positive integer and B = {0, 1}, the algebraic system
(Bn,∧,∨,⊕,¬,≤,≥, >,<,≤s,≥s, >s, <s, 	=,=,�s,�,�,+,−, ·), where �,�
denote left and right shifts, · (or juxtaposition) denotes multiply, and signed
compares and arithmetic right shift are indicated by s, is a Boolean-arithmetic
algebra (ba-algebra), BA[n]. n is the dimension of the algebra.

BA[n] includes the Boolean algebra (Bn,∧,∨,¬), the integer modular ring Z/(2n),
Galois field gf(2n), and p-adic numbers[19]. The first two structures are most used
in real applications and form the basis of our techniques for hiding keys (constants)
and operations over BA[n].

Definition 2. With BA[n] a ba-algebra and t a positive integer, a function
f: (Bn)t
→ Bn of the form

∑

i∈I

ai

⎛

⎝

∏

j∈Ji

ei,j(x1, . . . , xt)

⎞

⎠ ,

Information Hiding in Software with Mixed Boolean-Arithmetic Transforms 65

where ai are constants, ei,j are bitwise expressions of variables x1, . . . , xt over
Bn, and I, Ji ⊂ Z, are finite index sets, ∀i ∈ I, is a polynomial mixed Boolean-
arithmetic expression, abbreviated to a polynomial mba expression. (If each of
x1, . . . , xt is itself a polynomial mba expression of other variables, the composed
function is likewise a polynomial mba expression over Bn.) Each non-zero sum-
mand in the expression is a term. A linear mba expression is a polynomial mba
expression of the form

∑

i∈I

ai ei(x1, . . . , xt),

where ei are bitwise expressions of x1, . . . , xt and ai are constants.

Two examples of polynomial mba expressions over BA[n] are:

f(x, y, z, t) = 8458(x ∨ y ∧ z)3 ((xy) ∧ x ∨ t) + x+ 9(x ∨ y)yz3,
f(x, y) = x+ y − (x ⊕ (¬y)))− 2(x ∨ y) + 12564.

The latter is a linear mba expression. As indicated in [20], all integer comparison
operations can be represented by polynomial mba expressions with results in
their most significant bit (msb). For example, the msb of

(x− y)⊕ ((x⊕ y) ∧ ((x− y)⊕ x))
is 1 if and only if x <s y.

3.2 Linear MBA Identities and Expressions

We now show the existence of an unlimited number of linear mba identities. We
use truth tables, where the relationship of variables of the expression in the table
and conjuncts is shown by example in Table 1.

Theorem 1. Let n, s, t be positive integers, let xi be variables over Bn for i=
1, . . . , t, let ej be bitwise expressions on xi’s for j=0, . . . , s−1. Let e=

∑s−1
j=0 aj ej

be a linear mba expression, where aj are integers, j=0, . . . , s− 1. Let fj be the
deduced Boolean expression from ej, and let (v0,j , . . . , vi,j , . . . , v2t−1,j)T be the
column vector of the truth table of fj, j = 0, . . . s− 1, and i = 0, . . . , 2t − 1. Let
A = (vi,j)2t×s, be the {0,1}-matrix of truth tables over Z/(2n). Then e = 0 if
and only if the linear system AY = 0 has a solution over ring Z/(2n), where
Ys×1 = (y0, · · · , ys−1)T is a vector of s variables over Z/(2n).

Proof. If e = 0, (a0, a1, · · · , as−1)T is plainly a solution of the linear system.
Assume a solution exists. Let zji represent the i−th bit value of ej , j =

0, 1, · · · , s−1, i=0, 1, · · · , n−1. Truth tables run over all inputs, so row vectors
of matrix A run over all values of i-th bit vector (z0,i, . . . , zs−1,i) in the Boolean
expressions, and via the above solution,

∑s−1
j=0 ajzj,i = 0, for i = 0, . . . , n− 1.

From the arithmetic point of view, ej =
∑n−1

i=0 zj,i2i. Thus we have

s−1
∑

j=0

ajej =
s−1
∑

j=0

n−1
∑

i=0

ajzj,i2i =
n−1
∑

i=0

s−1
∑

j=0

ajzj,i2i =
n−1
∑

i=0

2i(
s−1
∑

j=0

ajzj,i) = 0,

as required. �

66 Y. Zhou et al.

By this theorem, any {0, 1}-matrix (vij)2t×s with linearly dependent column
vectors generates a linear mba identity of t variables over Bn. For example, the
{0, 1}-matrix

A =

⎛

⎜

⎜

⎝

0 0 0 1 1
0 1 1 1 1
1 0 1 1 1
1 1 1 0 1

⎞

⎟

⎟

⎠

with column-vector truth-tables for f0(x, y) = x, f1(x, y) = y, f2(xy) = x ∨ y,
f3(x, y) = ¬(x∧y), f4(x, y) = 1, respectively, with solution (1, 1,−1, 1,−1)T over
Z/(232), generates linear mba identity x + y − (x ∨ y) + (¬(x ∧ y))− (−1) = 0,
using x1 = x, x2 = y, and −1 = all 1’s. The interested reader can write C code
to verify the identity for any x, y ∈ B32 by defining x and y as unsigned or signed
32-bit integers. Other linear mba identities can be found in [20].

The following theorem states that any Boolean function has non-trivial linear
mba expressions. It allows us to embed hard Boolean functions into mba trans-
forms.

Table 1. Truth Table for x1 ∨ (x2 ⊕ (¬x3))

Conjunction Binary Result

(¬x1) ∧ (¬x2) ∧ (¬x3) 000 1

(¬x1) ∧ (¬x2) ∧ (x3) 001 0

(¬x1) ∧ (x2) ∧ (¬x3) 010 0

(¬x1) ∧ (x2) ∧ (x3) 011 1

(x1) ∧ (¬x2) ∧ (¬x3) 100 1

(x1) ∧ (¬x2) ∧ (x3) 101 1

(x1) ∧ (x2) ∧ (¬x3) 110 1

(x1) ∧ (x2) ∧ (x3) 111 1

Theorem 2. Let e be a bitwise expression of m variables over Bn. Then e has
a non-trivial linear mba expression. That is e =

∑2m−1
i=0 aiei, where each ai ∈

Bn, each ei is a bitwise expression of the m variables, and e 	= ei in Bn, for
i = 0, 1, . . . , 2m − 1.

Proof. Let P2m×1 be the column vector of the truth table of the deduced Boolean
expression from e. Pick an invertible {0, 1}-matrix A2m×2m over Z/(2n). If a
column vector of A is P , add another column vector to it. Then we have an
invertible matrix A with all column vectors distinct from P . Suppose the so-
lution of linear equation AY = P2m×1 is Y = (y0, y1, . . . , y2m−1)T. Let ma-
trix Q2m×(2m+1) = (P,A), and X(2m+1)×1 = (−1, y0, y1, . . . , y2m−1)T. Because
AY = P , it is easy to show that QX = 0.

Following the disjunctive normal form (or any standard form) of Boolean
functions, for each column vector Ai of matrix A we have a unique Boolean
expression ei of m variables with Ai being its truth table, i = 0, 1, . . . , 2m − 1.

Information Hiding in Software with Mixed Boolean-Arithmetic Transforms 67

Since QX = 0, Theorem 1 gives a linear mba identity e −∑2m−1
i=0 yi ei = 0.

By our choice of A, ei 	= e for all i. �

3.3 Permutation Polynomials and Other Invertible Functions

We use polynomial functions over Z/(2n) to generate polynomial mba expres-
sions. We need invertible polynomials[15,13,12], and both the polynomial and
its inverse must be of limited degree so that polynomial code transformations
are efficient. We now show that there are many such invertible polynomials.

Theorem 3. Let m be a positive integer and let Pm(Z/(2n)) be a set of polyno-
mials over Z/(2n):

Pm(Z/(2n)) =

{

m
∑

i=0

aix
i

∣

∣

∣

∣

∀ai ∈ Z/(2n), a1 ∧ 1 = 1, a2
i = 0, i = 2, . . . ,m

}

.

Then (Pm(Z/(2n)), ◦) is a permutation group under the functional composition
operator ◦. For every element f(x) =

∑m
i=0 aix

i, its inverse g(x) =
∑m

j=0 bjx
j

can be computed by

bm = −a−m−1
1 am,

bk = −a−k−1
1 ak − a−1

1

∑m
j=k+1

(

j
k

)

aj−k
0 Aj ,m− 1 ≥ k ≥ 2,

b1 = a−1
1 − a−1

1

∑m
j=2 ja

j−1
0 Aj ,

b0 = −∑m
j=1 a

j
0bj ,

where Am = −a−m
1 am, and Ak are recursively defined by

Ak = −a−k
1 ak −

m
∑

j=k+1

(

j
k

)

aj−k
0 Aj , for 2 ≤ k < m.

Proof. By definition of Pm(Z/(2n)), the coefficient of x is odd, and coefficients
of higher degrees are even. By [15], they are permutation polynomials. To show
(Pm(Z/(2n)), ◦) is a group, we compute all coefficients of the composition g(x) ◦
f(x) = g(f(x)) =

∑m
j=0 bjf(x)j of any two elements f(x) =

∑m
i=0 aix

i and
g(x) =

∑m
j=0 bjx

j ∈ Pm(Z/(2n). For any j ∈ {2, . . . ,m}, we have

bjf(x)j =
∑

(i1···ij),ik∈{0,...,m},k=0,...,j bjai1 · · · aijx
i1+···+ij

=
∑

(i1···ij),ik∈{0,1},k=0,...,j bjai1 · · · aijx
i1+···+ij (since bjai = 0, ∀i ≥ 2)

= bj
∑j

k=0

(

j
k

)

ak
1a

j−k
0 xk;

g(f(x)) = b0 +
∑m

i=0 b1aix
i +

∑m
j=2 bj

∑j
k=0

(

j
k

)

ak
1a

j−k
0 xk

= b0 +
∑m

k=0(b1ak +
∑m

j=2,j≥k bj

(

j
k

)

ak
1a

j−k
0)xk

=
(

∑m
j=0 a

j
0bj

)

+
(

∑m
j=1 ja

j−1
0 a1bj

)

x

+
∑m

k=2

(

akb1 +
∑m

j=k

(

j
k

)

aj−k
0 ak

1bj

)

xk.

68 Y. Zhou et al.

Let
∑m

i=0 cix
i denote g(f(x)). Then c1 is odd since both a1 and b1 are odd, and

all bj, j ≥ 2, are even. For all ak and bj, k, j ≥ 2, a2
k = b2j = 0, so we have

c2i = 0, i ≥ 2. Therefore g(f(x)) ∈ Pm(Z/(2n)) and Pm(Z/(2n) is a group.
Let us compute the inverse of f(x). Assume g(f(x)) = x, which implies c1 = 1

and ci = 0, i = 0, 2, · · · ,m. From cm = 0 we have bm = −a−m
1 amb1. Similarly,

for all k, m > k ≥ 2, ck = 0 implies bk = −a−k
1 ak −

∑m
j=k+1 bj

(

j
k

)

aj−k
0 .

Observing that the second term of bk is defined by bj, j > k, and b1 is a common
factor of all these bk starting at bm, we can define bk = b1Ak such that all Ak

can be computed from Am, Am−1, . . . , Ak+1; i.e., Am = −a−m
1 am, and Ak =

−a−k
1 ak −

∑m
j=k+1

(

j
k

)

aj−k
0 Aj , from known coefficients of f(x). From c1 = 1

we obtain b1 = a−1
1 (1 +

∑m
j=2 ja

j−1
0 Aj)−1 = a−1

1 (1−∑m
j=2 ja

j−1
0 Aj). The latter

identity holds because A2
k = 0 for all k, m > k ≥ 2. Based on this formula for b1

and the identities bk = b1Ak, and c0 = 0, we can compute all other coefficients
recursively: bm = −a−m−1

1 am, and for all k with m > k ≥ 2,

bk = a−1
1 (1−∑m

j=2 ja
j−1
0 Aj)(−a−k

1 ak −
∑m

j=k+1

(

j
k

)

aj−k
0 Aj)

= −a−k−1
1 ak − a−1

1

∑m
j=k+1

(

j
k

)

aj−k
0 Aj .

We then easily derive b0 = −∑m
j=1 a

j
0bj . �

P1(Z/(2n)) is used for data transforms in [10]. Formula of polynomial inverses
of polynomials in P2(Z/(2n)) is given in [21]. Following Theorem 3, for cubic
polynomial

f(x) = a3x
3 + a2x

2 + a1x+ a0

in P3(Z/(2n)), its inverse is

f−1(x) = (−a−4
1 a3)x3 + (−a2a

−3
1 + 3a0a

−4
1 a3)x2

+(a−1
1 + 2a0a

−3
1 a2 − 3a2

0a
−4
1 a3)x− a0a

−1
1 − a2

0a
−3
1 a2 + a3

0a
−4
1 a3.

The above theorem implies that all encoding, decoding and composition func-
tions are in conveniently similar formats for generating code transforms.

Over BA[n], there are other types of invertible functions that can be used to-
gether with mba identities and permutation polynomials. For example, Z/(2n)
invertible matrices can be composed with invertible polynomials to form poly-
nomial matrices and matrix polynomials. The T-functions of [11,12] provide
another example.

3.4 Code Transforms Via Zero and Invertible MBA Functions

Operating on transformed data requires that the data and code (see Fig. 1(A))
use corresponding transforms (see Fig. 1(C)). mba transforms constructed using
zero functions (functions returning zero irrespective of their inputs) and invert-
ible functions achieve this while interlocking and hiding the original operations.
Linear mba identities and permutation polynomials over BA[n] are our main
resources.

Information Hiding in Software with Mixed Boolean-Arithmetic Transforms 69

There are two basic methods to hide operation in polynomial mba expres-
sions. The first one is to treat code (possibly a single operation or variable)
as a subexpression in a polynomial mba zero function and replace it with the
negated sum of the remaining terms (i.e., it performs an identity substitution
tk = −∑k−1

i=1 ti+
∑n

i=k+1 ti derived from a zero function of the form
∑n

i=1 ti = 0).
The other method uses functional compositions of mba functions and the

first method. For example, given two invertible functions S and T , function f is
S−1 ◦S ◦ f ◦T ◦T−1. The associative law of functional composition allows us to
write f as S−1 ◦ (S ◦ f ◦T)◦T−1. Applying the first method to (S ◦ f ◦T) before
compositions we obtain a new expression of f ; i.e., we compute on ‘encrypted’
data with ‘encrypted’ functions[16,17].

A key technique is interlocking: (1) reverse partially evaluate: at Y, replace a
function f : A
→ C with a function g: A × B
→ C such that g(· , b) = f(·) but
g(· , x) where x 	= b gives a nonsense result and b (absent tampering) comprises
value(s) computed at X, and then (2) make code at site Y highly dependent on
code at site X by using values produced or obtained at X as coefficients in Y’s
transforms and finally (3) apply the remaining protections in this paper to make
the interlock extremely hard to eliminate. Removing such interlocks requires that
the attacker fully understand what has been done (highly nontrivial, as we argue
in §5), and tampering at X produces chaotic behavioral changes at Y . Thus
dense interlocking renders code aggressively fragile under tampering. Interlocks
also foil code-lifting.

Compositions of zero and/or invertible functions with original operations in
specific orders give us desired polynomial mba expressions, as shown in the proof
below.

Proposition 1. Let m be a positive integer. Then every operation in ba-algebra
BA[n] = (Bn,∧,∨,⊕,¬,≤,≥, >,<,≤s,≥s, >s, <s, 	=,=,�s,�,�,+,−, ·) can
be represented by a high degree polynomial mba expressions of multiple terms of
m variables over Bn.

Proof. It suffices to show that each operation can be represented by a linear mba
identity of at least two terms, since then we can apply operation and composition
transforms with invertible polynomials according to Theorem 3 to obtain high
degree polynomial mba expressions of any desired number of variables.

Any single variable x over Bn can be represented by a linear mba expression
using any number of variables: this follows immediately from Theorem 2 by using
x’s truth table. If we have x =

∑

i∈I ei, where ei are bitwise expressions and y =
∑

s∈S ts where ts are bitwise expressions, then x± y is a linear mba expression
and by Z/(2n) distributivity, xy is in a polynomial mba expression. So is � : it
is a multiplication. For right shifts we have x�s y = −((−x− 1)�s y)− 1 and
x� y = −1− ((−x− 1)� y)− (((−1)� y)⊕ (−1)). Theorem 2 indicates that
all bitwise operations can be a linear mba expression with at least two terms.
Formulas in [20] express arbitrary signed and unsigned comparisons as bitwise
operations with subtraction. We then apply Theorem 2 to obtain expressions
of more that two terms. (This construction is one of many due to BA[n]’s rich
mathematical structure.) �

70 Y. Zhou et al.

4 Protection Methods

4.1 Simple Constant Hiding Using MBA Transforms

In many applications, important information is represented by constants (keys).
Here, we provide methods to turn them into executable code which computes the
keys irrespective of its inputs, letting us seamlessly embed keys in applications.
wlog, we consider n-bit key hiding in BA[n] only: if the key size bigger than n, we
simply generate multiple n-bit keys which are concatenated to obtain the big key.

We start with the following result to show that for any constant over Bn, there
is a polynomial mba expression computing that constant.

Proposition 2. For any constant K in BA[n] and any positive integer m there
is a multiterm polynomial mba function f with f(x1, . . . , xm) = K for arbitrary
x1, . . . , xm in BA[n].

Proof. We use quadratic polynomial and linear mba identities to construct f .
By Theorem 3, with a 	= 0, we have an invertible polynomial p(x) = ax2 + bx+ c
and its inverse q(x) = αx2 +βx+γ. Theorem 1 tells us that any singular matrix
of size 2m × t, with s, t positive integers, produces an m-variable linear mba
identity. Let

∑r
i=1 ai ei = 0 be an identity with multiple non-zero terms. Then

K = q(p(K)) = q(
∑r

i=1 ai ei+p(K)). Expanding the expression after rearranging
terms in

∑r
i=1 ai ei+p(K) yields anm-variable polynomial mba expression. (This

construction is one of many due to BA[n]’s rich mathematical structure.) �

The variable inputs obfuscate the code, and its mba expression frustrates simpli-
fication. The variables are typically shared with the remainder of the application.
Appendix A gives a practical example.

4.2 Algorithm and Data Hiding Example: Software Watermarking

As noted in §2.3, systems such as aacs can greatly benefit from mba-based
algorithm and data hiding. As another example, we now show that they can
provide a secret watermark to prove identity of software[6], where a watermark
is an n-bit constant W , its extraction key is a k-bit constant K, where k is
large, and we must embed W in program P so that we can reliably extract it
under K, but an attacker (ignorant of K) cannot obliterate it. (To make n and k
large, we can compose W from W1, . . . ,Ww and K from K1, . . . ,Kw; i.e., we can
use multiple sub-watermarks and multiple corresponding sub-keys. The methods
should be obvious: we need not discuss this further.)

Watermark Injection. We can represent W and 2n −W as multiterm poly-
nomial mba expressions by Proposition 2:

W = f(x1, . . . , xp) =
∑

s∈S

as

∏

j∈Js

es,j(x1, . . . , xp),

2n −W = g(y1, . . . , yq) =
∑

i∈I

ai

∏

j∈Ji

ei,j(y1, y2, . . . , yq),

for any integer variables x1, . . . , xp, y1, . . . , yq ∈ Bn.

Information Hiding in Software with Mixed Boolean-Arithmetic Transforms 71

Suppose P has an mba expression

h(z1, . . . zr) =
∑

t∈T

at

∏

j∈Jt

et,j(z1, . . . zr),

as an intermediate computation. For example, h could be any single BA oper-
ation, which can be represented by multiterm polynomial mba expressions due
to Theorem 3.

We can embed watermark W into h based on h = W + h+ (2n −W). wlog,
assume index sets I, S and J are disjoint. Since x1, . . . , xp, y1, . . . , yq are random
variables, we can choose some of them from the set {z1, . . . , zr}. Therefore, the
intersection of variable sets {y1, . . . , yq}∩{x1, . . . , xp}∩{z1, . . . , zr} maybe non-
empty. Represent all with the new set

{u1, . . . , uw} = {y1, . . . , yq} ∪ {x1, . . . , xp} ∪ {z1, . . . , zr}.

Let σ be any permutation of index set I ∪ S ∪ J . We have

h =
∑

σ(t)∈I∪S∪J

aσ(t)

∏

j∈Jσ(t)

eσ(t),j(u1, u2, · · · , uw).

Watermark W is computed by adding all terms with indices in σ(S) and
permutation σ is the watermark key K. To further obfuscate the watermark,
apply permutation polynomial p to the watermark expression to mix its terms
with terms in h. Then the table-concatenation of permutation σ and the the
inverse permutation polynomial p−1’s coefficients is watermark key K.

Following this general watermarking method, we can embed constant water-
marks into any BA operations and mba expressions. The embedding is stealthy
because recovering a watermark without the key is an instance of the np-
complete Subset Sum problem, and can be made hard in practice by applying
the protections of §3.4.

Watermark Extraction. For any program P there are likely to be inputs
which are extremely improbable in normal use. Let P be a program containing an
injected watermarkW under key K as described above. At this point, extracting
W from the executable code is awkward, and the techniques of this very paper
could be used to obscure it and make it effectively impossible to extract.

Instead, the program extracts its own watermark by reüsing the above poly-
nomial computations. (Generating code to do this which we are building the
code is easy.) Let an extremely improbable lineup of inputs for P be K. Find
an encoding or encodings E according to §3.4 such that E(K) = K (an easy
problem). Then, replace P with P′ which, if its input-lineup I = K, computes
K = E(K) and uses K to extract and output W , but in all other circumstances,
computes P(I) as in the original program (see Fig. 3).

Now, encode P′ according to §3.4, using interlocking to render the water-
marking aspects of the code highly fragile under tampering, and making the
normal behavior of P′ highly dependent on the watermarking code, producing

72 Y. Zhou et al.

final program Q, the final watermark-protected version of P, with a watermark
W protected under the new encoded key K.

Extensions to interactive or transaction programs and the like are straight-
forward and left as an exercise.

Watermark Robustness. The watermark in final watermarked program Q
above is protected as follows. The attacker does not know K and so cannot
directly attack the response to K. Attempting to otherwise change the i/o be-
havior of the program produces chaotic results: useless to the attacker since
it simply destroys the program instead of obliterating the watermark. Further
complicating the program by the methods in this paper does not obliterate the
watermark, since so protecting programs by transforms and identities preserves
functionality and the watermark extraction facility is a (very well hidden) part
of that functionality. Of course, the attacker could add another such watermark,
but that would not obliterate the original one.

5 Security of MBA Transforms

By experiment, analytical math tools (MathematicaTM, MapleTM) can’t sim-
plify most mba expressions. Moreover, the following problems are np-hard:

1. BA[n]-sat: for a given polynomial mba function f(x1, . . . , xm) over BA[n],
find values a1, . . . , am such that f(a1, · · · , am) 	= 0;

2. BA[n]-recog: for polynomial mba functions f(x1, . . . , xm), g(x1, . . . , xm)
over BA[n], find values a1, . . . , am such that f(a1, . . . am) 	= g(a1, . . . , am).

Proposition 3. BA[n]-satand BA[n]-recog are np-complete.

Proof. The result follows trivially from np-completeness of Boolean sat. �

(Efficient Boolean sat-solvers can’t directly solve these. Boolean sat is a small
subset of BA[n]-sat: the above problems require solvers for vectors of mutually
constrained Boolean sat-problems.)

Average-case complexity theory is too preliminary for direct security proofs:
in the Average Case Complexity Forum[2], the papers list was last updated
in March of 2000; of roughly 1200 papers added to the Electronic Colloquium
on Computational Complexity[8] since 1994, about one percent seem to be on
average case complexity. We must argue our case by other means.

The best available theory on mbas is provided in this very paper. We provide
easy ways to complicate, but not to simplify, programs.

Consider a program whose computations are interlocked and encoded accord-
ing to §3.4. Then consider any subexpression repeatedly transformed via the
constructions of Theorems 1 and 2. Plainly the program interlocking and encod-
ing and have vastly many choices, and by the nature of the constructions the
identity-substitutions can each have vastly many choices as well.

The simplification problem for such programs is the problem of reversing the
above process; the vast numbers of choices at every step make its search space

Information Hiding in Software with Mixed Boolean-Arithmetic Transforms 73

vast. Indeed, as expressions grow during this process, the increase in choices
with increasing numbers of steps is hyperexponential. We don’t expect efficient
simplifiers for such massively complex constructions any time soon. MapleTM,
MathematicaTM, or similar foreseeable tools, need large databases of known
identities and laws. As we have argued above, for mbas, we should change ‘large’
to ‘extremely large’, and probably to ‘infeasibly large’; methods depending on
simple laws such as Karnaugh-map Boolean simplification are inadequate. New
characterizations of np problems, such as pcp, might eventually offer attack
methods — but probably not soon.

Without an efficient simplifier, the limitless variety of polynomial mba repre-
sentations for any given BA operation, and the code composed of such operations,
becomes an insurmountable BA[n]-recog function recognition burden for the at-
tacker: the attacker must recognize the code functionality, but the search space
for the attacker is vast and grows over time as increasing numbers of transforms
are generated.

We can apply other protections before and/or after those in this paper: see
[14] for an excellent survey. Such techniques are important to provide defense
in depth and to address other attacks, for example, tampering or spoofing of
system calls. This paper’s methods proposed ensure viability of such additional
protections by obviating any need for specialized hardware.

6 Conclusion

We have introduced powerful new methods for protecting constants, data, and
code in software by converting computations into mixed Boolean-arithmetic
computations, whether linear or polynomial, over ba-algebras, which provide
a rich algebraic system based on the functionality of real-world computer in-
structions. Such protections are not penetrable using existing analytical tools
such as MapleTM or MathematicaTM, since they combine multiple algebraic
systems into one exceedingly complex system.

By basing our protections on ordinary computer instructions, we avoid the
vulnerabilities of methods of protection which require code to appear in unexe-
cutable forms or in forms which require an interpreter or a substantial supporting
library.

These mba transform methods provide open-ended generators for identities
and transformations which provide an effectively unlimited supply of encodings
for data and code, making the search-space for attackers very large, and increas-
ingly large over time, as we accumulate more and more vast sets of identities
and transforms.

We have described methods for hiding constants in code and for protecting
code by keys, so that tampering with the code, with high probability, causes the
code to malfunction, and given practical examples to demonstrate our methods.

Acknowledgements. The authors thank their colleagues Phil Eisen, Clifford
Liem, and the anonymous referees, for valuable comments.

74 Y. Zhou et al.

References

1. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM 45(1), 70–122 (1998)

2. Average Case Complexity Forum, http://www.uncg.edu/mat/avg.html
3. Chow, S., Johnson, H., Gu, Y.X.: Tamper resistant software encoding, US Patent

No. 6594761 (2003)
4. Chow, S., Gu, Y.X., Johnson, H., Zakharov, V.A.: An Approach to the Obfuscation

of Control-Flow of Sequential Computer Programs. In: Davida, G.I., Frankel, Y.
(eds.) ISC 2001. LNCS, vol. 2200, pp. 144–155. Springer, Heidelberg (2001)

5. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: White-Box Cryptography
and an AES Implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, Springer, Heidelberg (2003)

6. Collberg, C.S., Thomborson, C.: Watermarking, Tamper-Proofing, and Obfusca-
tion - Tools for Software Protection. IEEE Trans. Software Eng. 28(6) (June 2002)

7. Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., Jakubowski, M.H.: Obliv-
ious Hashing: A Stealthy Software Integrity Verification Primitive. In: Petitcolas,
F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 400–414. Springer, Heidelberg (2003)

8. Electronic Colloquium on Computational Complexity,
http://eccc.hpi-web.de/eccc/ ISSN 1433-8092

9. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and
Company, New York (1979)

10. Kandanchatha, A.N., Zhou, Y.: System and method for obscuring bit-wise and
two’s complement integer computations in software, Canadian patent application
2456644, 2004; US Patent Application 20050166191 (2005)

11. Klimov, A., Shamir, A.: Cryptographic Applications of T-functions. In: Matsui,
M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 248–261. Springer,
Heidelberg (2004)

12. Klimov, A.: Applications of T-functions in Cryptography, PhD Thesis, Weizmann
Institute of Science (2004)

13. Mullen, G., Stevens, H.: Polynomial functions (mod m). Acta Mathematica Hun-
garica 44(3-4), 287–292 (1984)

14. van Oorschot, P.C.: Revisiting Software Protection. In: Boyd, C., Mao, W. (eds.)
ISC 2003. LNCS, vol. 2851, pp. 1–13. Springer, Heidelberg (2003)

15. Rivest, R.L.: Permutation Polynomials Modulo 2w . Finite Fields and their Appli-
cations 7, 287–292 (2001)

16. Sander, T., Tschudin, C.F.: Towards Mobile Cryptography. In: Proceedings of the
1998 IEEE Symposium on Security and Privacy, pp. 215–224 (1998)

17. Sander, T., Tschudin, C.F.: Protecting Mobile Agents Against Malicious Hosts. In:
Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 44–60. Springer,
Heidelberg (1998)

18. Ogiso, T., Sakabe, Y., Soshi, M., Miyaji, A.: Software Tamper Resistance Based
on the Difficulty of Interprocedural Analysis. In: Proceedings of WISA 2002 (2002)

19. Vuillemin, J.: Digital algebra and Circuits. In: Dershowitz, N. (ed.) Verification:
Theory and Practice. LNCS, vol. 2772, Springer, Heidelberg (2004)

20. Warren Jr., H.S.: Hacker’s Delight. Addison-Wesley, Boston (2002),
www.hackersdelight.org

21. Zhou, Y., Main, A.: Diversity via Code Transformations: A Solution for NGNA
Renewable Security, The NCTA Technical PapersTM 2006, The National Cable
and Telecommunications Association Show, Atlanta, pp. 173–182 (2006)

22. http://www.aacsla.com

http://www.uncg.edu/mat/avg.html
http://eccc.hpi-web.de/eccc/
www.hackersdelight.org
http://www.aacsla.com

Information Hiding in Software with Mixed Boolean-Arithmetic Transforms 75

A Example of Key Hiding in an MBA Polynomial

Let the key be K = 0x87654321 (hex). We use three input variables x, x1, x2 ∈
B32, two linear mba identities

2y = −2(x ∨ (−y − 1))− ((−2x− 1) ∨ (−2y − 1))− 3;
x+ y = (x⊕ y)− ((−2x− 1) ∨ (−2y − 1))− 1;

and one polynomial transform

f(x) = 727318528x2 + 3506639707x+ 6132886 ∈ P2(Z/(232))

to generate the following key code:

a = x(x1 ∨ 3749240069); b= x((−2x1 − 1) ∨ 3203512843);
d = ((235810187x+ 281909696− x2)⊕ (2424056794 + x2));
e = ((3823346922x+ 3731147903+ 2x2) ∨ (3741821003

+ 4294967294x2));
key = 4159134852e+ 272908530a+ 409362795x+ 136454265b

+ 2284837645 + 415760384a2 + 415760384ab+ 1247281152ax
+ 2816475136ad+ 1478492160ae+ 3325165568b2 + 2771124224bx
+ 1408237568bd+ 2886729728be+ 4156686336x2 + 4224712704xd
+ 70254592xe+ 1428160512d2 + 1438646272de+ 1428160512e2

+ 135832444d,

where a, b, d, e ∈ B32 are intermediate variables. The output value of key is
always the constant K regardless of values in x, x1, and x2.

Geometrically Invariant Image Watermarking

in the DWT Domain

Shijun Xiang and Hyoung-Joong Kim

Graduate School of Information Security,
Center for Information Security Technologies (CIST),

Korea University, Seoul 136-701, Korea
xiangshijun@gmail.com, khj-@korea.ac.kr

Abstract. Watermark resistance to both geometric attacks and lossy
compressions is a fundamental issue in the image watermarking commu-
nity. In this paper, we propose a DWT (Discrete Wavelet Transform)
based watermarking scheme for such a challenging problem. Watermark
resistance to geometric deformations is achieved by using the invari-
ance of the histogram shape. In both theoretical analysis and experi-
mental way, we show that the invariance can be extended to the DWT
domain thanks to the time-frequency localization property of DWT. Con-
sequently, we achieve the goal to embed a geometrically invariant water-
mark into the low-frequency sub-band of DWT in such a way that the
watermark is not only invariant to various geometric transforms, but also
robust to common image processing operations. Extensive simulation re-
sults demonstrate the superiority of the proposed watermark strategy
due to the use of the histogram shape invariance combined with the
DWT technique.

1 Introduction

With the development of the Internet and image processing techniques, more and
more digital media (e.g., image and video) become available from online sites
and easy to distribute illegal copy. Image watermarking as a potential technical
solution has been developed for copyright protection of owner [1]. For identi-
fying the illegal use of digital products, the watermark should be resistant to
two different kinds of content-preserving manipulations. One is noise-like image
processing operations, which may fail the watermark extraction by reducing the
watermark energy. The other includes various geometric attacks. From the image
watermarking point of view, geometric attacks mainly introduce synchronization
errors between encoder and decoder. The watermark is still present, but the de-
tector is no longer able to detect it. Thus, watermark robustness to geometric
attacks is taken as a challenging issue.

In the literature, only a few algorithms have presented the topic of how to
achieve robustness against geometric attacks, which can be broadly classified
into the following categories:

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 76–90, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Geometrically Invariant Image Watermarking in the DWT Domain 77

i) Non-blind watermarking. The cost for resynchronization can be reduced by
comparing the original image with the watermarked image which has un-
dergone some geometric attacks, such as [2,3]. The non-blind watermarking
schemes are limited for most of the practical applications.

ii) Exhaustive search: Another obvious solution to desynchronization is to ran-
domly search for the space including a set of acceptable attack parameters.
One concern in the exhaustive search is the computational cost and the false
alarm probability in the larger search space.

iii) Invariant watermarking. Some researchers embedded the watermark into the
affine invariant domain [4,5,6]. The watermark in the affine-invariant do-
mains such as Fourier-Mellin transform can achieve the robustness to affine
transforms. Though these techniques are robust to affine transform, they are
vulnerable to cropping and difficult to implement.

iv) Using reference mark. The authors in [7,8] embedded a template invariant to
affine transform in the DFT domain. By searching for the template to esti-
mate the attacked parameters for recovery of the watermark. The template-
based watermarking methods possibly suffer from the security issue [9].

v) Content-based invariance watermarking. By binding the watermark syn-
chronization with the image characteristics, watermark detection avoids the
synchronization errors. This class of watermarking methods usually exploit
some special techniques to find those invariant features in an image. For
instance, the watermark was embedded by using globally affine invariance
of the moments [10,11,12] or locally invariant feature regions, such as image
meshes [13] and Harris points [14]. A possible problem with content-based
invariance watermarking is the computational burden in the detection due
to the use of robust descriptor.

In this paper, we propose a histogram-based invariant watermarking solution,
which has a satisfactory robustness to various geometric attacks. The basic idea
is to apply geometrically invariant property of the histogram shape in a way
that the watermark is embedded by controlling the number of samples in each
two neighboring bins. Considering those noise-like image processing operations,
we extend the invariance of the histogram shape to the DWT domain, so that
the watermark can be embedded in the low-frequency component to improve
robustness performance. Stirmark [15] and Checkmark [16] based simulation
tests demonstrate that the proposed watermarking algorithm is very robust to
various geometric attacks and has a satisfactory performance for common image
processing operations.

The idea of modifying image statistics for watermarking is not new. For in-
stance, patchwork-based watermarking methods (such as [17]) suppose that two
sets of randomly selected pixels is Gaussian distributed with zero mean. The
watermark sequence was embedded by shifting the mean among groups of two
sets of pixels. The patchwork method is sensitive to geometric attacks since the
detector can not find the patches correctly. In [18], a histogram specification was
introduced for image watermarking. Later, the authors further presented some
works to improve the watermarking method [19]. In [18,19], the watermark is in

78 S. Xiang and H.-J. Kim

fact designed as a histogram. The basic idea is that the pixels in the original im-
age are regrouped to achieve a desired histogram (the watermarked histogram).
Also, the histogram has been applied in other watermarking applications such
as lossless data hiding [20]. Our proposed watermarking method is based on the
histogram shape invariance, which is distinctively different from the previous
histogram-based ones.

In the next section, we will describe the characteristics of the histogram shape
to geometric transforms via both the theoretical proof and the extensive testing.
This is followed by a description of our proposed watermark embedding and
detecting strategy. We then test and analyze the watermark robustness to geo-
metric distortions and some common attacks. Finally, we draw the conclusions.

2 Invariant Features to Geometric Transformations

In this section, we first review geometric transformations briefly. We then inves-
tigate the insensitivity of the image histogram shape in the low-frequency of the
DWT domain to geometric attacks.

2.1 Geometric Transformations

In [21], the authors introduced various geometric attacks on image watermarking
system in detail. Common geometric distortions include affine transforms (such
as rotation, scaling, translation and shearing) and cropping. RBAs (Random
Bending Attacks) are recently reported geometric attacks, which are claimed as
a challenging issue in image watermarking [21].

From the image watermarking point of view, all of the geometric attacks re-
spect the rule that some or all of the pixels are displaced at a random amount
under the constraint of visual coherence. Thus, geometric attacks mainly in-
troduce desynchronization between encoder and decoder. Due to interpolation
during geometric deformations, the pixel values will be modified slightly. To-
wards this direction, in the next section we investigate an invariant statistical
feature (the histogram shape), which is mathematically invariant to affine trans-
forms, as well as statistically resistant to those challenging geometric attacks,
such as cropping and RBAs.

2.2 Invariance of the Histogram shape in the Spatial Domain

In [22], we analyzed the time-scale invariance of the histogram shape in 1-D
audio signal. However, the image is quite different from the audio signal and the
attacks the images may encounter are also different. In [23], we have addressed
image histogram shape invariance in the spatial domain. There paper extends
the invariance to the DWT domain for improving the robustness.

The image histogram with equal-sized bins may be described by

HM = {hM (i)|i = 1, · · · , L}, (1)

Geometrically Invariant Image Watermarking in the DWT Domain 79

where HM is a vector denoting the gray-level histogram of the image F (i, j) =
{f(i, j)|i = 1, ..., R, i = 1, ..., C}, and hM (i), hM (i) ≥ 0 denotes the number of
pixels in the ith bin satisfying

∑L
i=1 hM (i) = R×C. Suppose that the resolution

of the image is P bits, the relation between the number of bins L and the bin
width M is calculated as

L =

{

2P /M if Mod(2P /M) = 0
�2P /M�+ 1 otherwise,

(2)

where �� is the floor function.
Consider the case of pure non-proportional scaling over the image F (i, j).

Suppose that F ′(x′, y′) = {f ′(x′, y′)} is the scaled image with the scaling factors
α and β in both vertical and horizontal directions. f ′(x′, y′) is the value in the
point (x′, y′), theoretically satisfying the expression f ′(x′, y′) = f(x/α, y/β). In
the new version, the number of rows and columns are calculated as R′ = αR
and C′ = βC. The histogram of F ′(x′, y′) can be formulated as

H ′M = {h′M (i)|i = 1, · · · , L}, (3)

which satisfies the expression h′M (i) = hM (i)·α·β in theory, referred to Equation
(1). Equation (3) indicates the invariance of the histogram shape to the scaling
operation because under the scaling the number of elements in the bins are
modified linearly. In practice, the number of the pixels in each bin may be
slightly modified due to interpolation.

Rotation and translation are two common operations, which will be able to
modify the pixel positions in the image plane. In the two cases, the histogram
shape will be invariant due to the fact that the histogram is independent of the
pixel position. This kind of special property also provides the histogram shape
a capability against other challenging geometric attacks, such as cropping and
RBAs. In practice, the interpolation errors during rotation and RBAs will distort
the pixel slightly. As a result, the histogram shape will be changed a little.

2.3 The Histogram Shape Invariance in the DWT Domain

As we have known, the watermark can be embedded in the low-frequency com-
ponent to improve watermark robustness performance, referred to the previous
watermarking schemes in the DCT [1] and DWT [8] domain. Towards this direc-
tion, we extend the invariance of the histogram shape to the low-frequency sub-
band of the DWT domain by exploiting the time-frequency localization property
of DWT. The detailed procedure is described below.

Assume that F (x/α, y/β) is the scaled version of a digital image F (x, y). The
pixels in F (x, y) and F (x/α, y/β) can be interpreted as the following 1-D vectors
by using zigzag scanning, respectively:

V1 = {v1(i)|i = 1, · · · , R×C} and V2 = {v2(j)|j = 1, · · · , α ·R×β ·C}, (4)

where R and C respectively denote the size of rows and columns in F (x, y). Let
{ckα,β(j)} and {ck(i)} denote the low-frequency sub-band coefficients of V1 and

80 S. Xiang and H.-J. Kim

V2 after a k-level 1-D DWT, respectively. When k is 0, it is equivalent in the
spatial domain. If k is 1, we have:

{

ck(i) = c1(i) =
∑L1

l=1 g(l) · v1(2(i− 1) + l)
ckα,β(j) = c1α,β(j) =

∑L1
l=1 g(l) · v2(2(j − 1) + l),

(5)

where {g(l)|l = 1, · · · , L1} is the low-pass filter. The DWT operation above will
make the histogram difference between V1 and V2 in the DWT domain though
the theoretical invariance to the scaling is right in the spatial domain. It is due
to the fact that some of the neighboring samples belong to different bins.

This problem can be solved by regrouping the samples in V1 and V2 accord-
ing to their spatial-domain histogram shape, and then applying the DWT to
the pixels of each bin. Referred to Equation (5), the time-frequency localiza-
tion characteristic of DWT shows that each transformed coefficient in the low-
frequency sub-band is generated by filtering the neighboring L1 samples with
the low-pass filter {g(i)}. As a result, the DWT coefficients obey the same the
histogram shape as the spatial-domain one. Let us take a simple example. Sup-
pose that there are 6 neighboring samples, their intensity values denoted by a
vector X = [1, 6, 2, 5, 3, 4]. We extract the histogram with 3 equal-sized bins. By
regrouping X to generate a new vector Xs = [1, 2, 3, 4, 5, 6]. Then, to perform
1-level DWT on X and Xs with the ′db1′ wavelet base with the low-pass filter of
[
√

2
2 ,
√

2
2]. The low-frequency coefficients of X and Xs are respectively computed

and denoted as

C = [(1 + 6)×
√

2
2 , (2 + 5)×

√
2

2 , (3 + 4)×
√

2
2] = [7

√
2

2 , 7
√

2
2 , 7

√
2

2],
Cs = [(1 + 2)×

√
2

2 , (3 + 4)×
√

2
2 , (5 + 6)×

√
2

2] = [3
√

2
2 , 7

√
2

2 , 11
√

2
2].

Obviously, there are 3 low-frequency coefficients after 1-level DWT in C and Cs.
Without loss of generality, we compute the histograms of X , Xs, C and Cs with
3 equal-sized bins, respectively. It is noted that X or Xs (three bins, each bin
including two samples) and Cs (three bins, each bin including one coefficient)
have the same histogram shape, but the histogram of C (only one bin including 3
coefficients) is completely different from that of X (three bins, each bin including
two samples). The simple example demonstrates that mapping image into 1-D
signal and then regrouping are two crucial steps to exploit the time-frequency
localization characteristics of 1-D DWT, so that the invariance of the histogram
shape can be transferred to the DWT domain. Note that the invariance can not
be equally extended to the DFT and DCT global transform domain.

Let Hr,k
μ denote the histogram of the image after the k-level DWT being

performed. Here, μ is the bin width. Referred to Equation (1), the image his-
togram after regrouping may be rewritten as Hr,0

M = {hr,0
M (i)|i = 1, · · · , L}, and

Hr,0
M = HM . Referred to Equation (5)), the low-frequency band histogram shape

of 1-level DWT domain may be mathematically formulated as,

Hr,k
μ = Hr,1

(χ)1·M = {�h
r,0
M (i) + L1 − 1

2
�} = {�hM (i) + L1 − 1

2
�}, (6)

Geometrically Invariant Image Watermarking in the DWT Domain 81

where i = 1, · · · , L, and the bin width is changed from M in Hr,0
M to χ ·M in

Hr,1
χ·M , theoretically. If k > 1, according to the definition of k-level DWT and

mathematical induction, Hr,k
μ may be formulated as,

Hr,k
μ = Hr,k

χk·M = {�
hr,k−1

χk−1·M (i) + L1 − 1

2
�} ≈ {

hr,k−1
χk−1·M (i)

2
} ≈ {hM (i)

2k
}. (7)

Referred to Equations (5), (6) and (7), after k-level DWT the bin width in the
low-frequency sub-band is χk ·M instead of M in the spatial domain. Here, χ is

χ =
L1
∑

l=1

g(l) (8)

according to 1-D DWT theory. Corresponding to Equation (7), it is obvious that
Hr,k

χk·M keeps the same the histogram shape as the spatial-domain histogramHM

since the number of samples is almost linearly reduced.
The above proof process shows the spatial-domain histogram shape invariance

and its extension in the DWT domain by: i) mapping image into 1-D signal,
ii) regrouping the 1-D signal and iii) afterwards performing the DWT. Due to
the fact that the zigzag mapped and regrouped 1-D signal can keep part of the
original spectrum of image, the watermark based on the DWT-domain histogram
shape can achieve a better performance for those common image processing
operations while keeping its capability against geometric attacks.

2.4 Experimental Testing

In practice, the histogram shape is not invariant exactly due to interpolation
errors during geometric deformations, such as scaling, rotation and many others.
In order to tolerate the interpolation errors, the spatial-domain histogram bin
width should be not less than 2 according to our observations.

In order to investigate the effect of interpolation during geometric attacks, we
examine the histogram shape invariance by computing the relative relations of
each two neighboring bins with peppers of size 512× 512 as the example image.
We also have tested the other well-known benchmark image (such as lena and
baboon, etc.). The simulation results are similar. In order to satisfy the condition
that the bins hold sufficient samples, we extract the histogram by referring to
the mean value. For an image, we compute the histogram by the following steps:

i) Remove those non-zero value pixels. By doing this step, we can avoid the ef-
fect of those resulted zero-value samples during some geometric deformations
(e.g., rotation and shearing).

ii) Extract the histogram by referring to the mean value and a parameter λ,
which can be formulated as B = [(1−λ)Ā, (1+λ)Ā]. When λ = 0.6, we have
achieve a satisfactory result.

iii) Finally, the histogram is extracted from the low-frequency sub-band of the
2-level DWT with the wavelet base of ′db5′.

82 S. Xiang and H.-J. Kim

Fig. 1. Peppers and its deformed versions with 9 typical geometric transforms

In order to evaluate the histogram shape invariance in the DWT domain,
we implement 9 typical geometric attacks including scaling, rotation, shearing,
bilinear, bilinear curved, warping, global bending and high-frequency bending
as shown in Fig. 1(b)∼(j), as well as three different percentages of cropping.
The relative relations of each two neighboring bins in the number of samples
are designed to represent the histogram shape. By computing the alteration of
the relative relations, we can examine the resistance of the histogram shape to
various geometric attacks. The relative relation of two successive bins can be
formulated as

α(k) =
hM (k + 1)
hM (k)

, 1 ≤ k ≤ L− 1, (9)

where L is the number of the bins, and M is the bin width, referred to Equa-
tion (8).

Fig. 2 (a), (b) and (c) illustrate the relative relations of each two neighboring
bins under the 9 typical geometric deformations. Fig. 2 (d) shows the effect of
cropping of 5%, 15% and 25% by deleting the outer content, respectively. We
can see that the relative relations in the number of pixels (or DWT coefficients)
among groups of two neighboring bins are rather stable under these geometric
attacks.

The above experimental works show the previous theoretical analysis on the
spatial-domain histogram shape insensitivity to geometric attacks and its exten-
sion in the DWT domain in Section 2 is logical. This also implies a fact that
if we embed the watermark based on the relative relations, it is expected that
the watermark will be able to withstand those challenging geometric attacks. In
addition, since the histogram is extracted from the low-frequency DWT coeffi-
cients of the preprocessed images, the watermark also can have a good capability
against those common compressing and filtering operations.

Geometrically Invariant Image Watermarking in the DWT Domain 83

0 5 10 15 20 25 30
0

1

2

nBINs

α(
k)

0 5 10 15 20 25 30
0

2

4

nBINs

α(
k)

0 5 10 15 20 25 30
0

2

4

nBINs

α(
k)

Scaling of 80%

Rotation of 20o

Shearing

(a) Rotation, Scaling and Shearing

0 5 10 15 20 25 30
0

2

4

nBINs

α(
k)

0 5 10 15 20 25 30
0

1

2

nBINs

α(
k)

0 5 10 15 20 25 30
0

5

10

nBINs

α(
k)

Bilinear

Bilinear−Curved

Warping

(b) Bilinear, Curved and Warping

0 5 10 15 20 25 30
0

2

4

nBINs

α(
k)

0 5 10 15 20 25 30
0

1

2

nBINs

α(
k)

0 5 10 15 20 25 30
0

5

10

nBINs

α(
k)

Global Bending

High−frequency Bending

Jittering Attack

(c) Global bending, High-frequency bend-
ing and Jittering

0 5 10 15 20 25 30
0

1

2

nBINs

α(
k)

0 5 10 15 20 25 30
0

1

2

nBINs

α(
k)

0 5 10 15 20 25 30
0

1

2

nBINs

α(
k)

Cropped 5%

Cropped 15%

Cropped 25%

(d) Cropping of 5%,15% and 25%

Fig. 2. The effect of the geometric deformations and cropping on the histogram shape.
This is evaluated by computing the relative relations of each two neighboring bins in
the number of DWT coefficients, denoted by α(k). The bin relative relations of the
original image Peppers are plotted with the points ‘+’ for the purpose of comparing
with the attacked ones plotted with ‘o’. These results demonstrate the histogram shape
invariance and the effect of the interpolation on the invariance.

3 Proposed Watermarking Algorithm

In this section, a geometrically invariant multi-bit image watermarking is pre-
sented. Watermark insertion and recovery are designed by the use of the his-
togram shape invariance. The histogram is extracted from the low-frequency
sub-band of DWT for the purpose of improving robustness to those common im-
age signal processing manipulations by preprocessing image (including mapping
into 1-D signal and regrouping).

84 S. Xiang and H.-J. Kim

Original
image

Extracting
histogram EmbeddingHB

L

Preprocessing
and DWT

Multi-bit
watermarkW

Watermarked
Image

Modify:
T

Yes

T

No

I

Watermark
visible ?

WI

IDWT

Fig. 3. Block Diagram of Watermark Embedding

3.1 Watermark Insertion

In the embedding phase, the image is first mapped into 1-D style, and then
regrouped (keeping the index as �). Furthermore, we extract the histogram as
in the previous section (see Section 2.4). The k-level DWT is performed to extract
the low-frequency coefficients. Divide the bins as groups, each two neighboring
bins as a group is used to carry a bit of watermark information by reassigning the
number of coefficients in each two bins. Finally, the inverse-DWT is performed
to generate the watermarked image with the index �. Fig. 3 illustrates block
diagram of the embedding process.

Suppose that there is a binary sequence W = {wi | i = 1, · · · , Lw} to be
hidden into a digital image. The histogram in the low-frequency sub-band of
DWT is denoted by H = {hM (i) | i = 1, · · · , L}. L should be not less than 2Lw

in order to embed all bits.
Let Bin 1 and Bin 2 be two consecutive bins, which include a and b coefficients,

respectively. We control the relative relation of the two bins to embed one bit of
information, formulated as

{

a/b ≥ T if w(i) = 1
b/a ≥ T if w(i) = 0

(10)

where T is a threshold selected with the consideration of the watermark robust-
ness performance and the embedding distortion. How to embed one bit into two
neighboring bins is depicted in Fig. 4.

Let us consider the case that w(i) is ′1′. If a/b ≥ T , no operation is needed.
Otherwise, the number of samples in two bins, a and b, will be adjusted until
satisfying a1/b1 ≥ T for the insertion of the bit ′1′. In the case of embedding the
bit ′0′, the procedure is similar. The watermark rules are referred to Equations
(11) and (12).

If w(i) is ′1′ and a/b < T , some randomly selected samples from Bin 2, in the
number denoted by I2, will be modified to fall into Bin 1, achieving a1/b1 ≥ T .

Geometrically Invariant Image Watermarking in the DWT Domain 85

Fig. 4. Illustration of embedding one bit of watermark information. There are four
cases in total: (a) a > b and a/b < T , (b) a > b and a/b ≥ T , (c) b > a and b/a < T ,
and (d) b < a and b/a ≥ T . I1 and I0 are the numbers of the least modified coefficients
according to the watermarking embedding rule.

If w(i) is ′0′ and b/a < T , some selected coefficients from Bin 1, in the number
denoted by I1, are adjusted into Bin 2 , satisfying b0/a0 ≥ T . The rule for
reassigning the coefficients is described as Equation (11).

{

f ′1(i) = f1(i) +M, 1 ≤ i ≤ I1
f ′2(j) = f2(j)−M, 1 ≤ j ≤ I2

(11)

where M is the bin width. f1(i) and f2(j) denote the ith and jth modified
coefficient in Bin 1 and Bin 2, respectively. The modified coefficients f ′1(i) fall
into Bin 2 while f ′2(i) move to Bin 1. I1 and I2 can be computed by using the
following mathematical expressions,

{

I1 = (T ∗ b− a)/(1 + T) making a1/b1 ≥ T from a/b ≤ T
I2 = (T ∗ a− b)/(1 + T) making b0/a0 ≥ T from b/a ≤ T, (12)

where a1 = a+ I1, b1 = b− I1, a0 = a− I2, and b0 = b+ I2.
This procedure is repeated until all watermark bits are embedded. Finally,

the inverse-DWT is implemented to generate the watermarked image, denoted
by Fw(x, y) = {fw(x, y)|x = 1 ∼ R, y = 1 ∼ C}.

3.2 Watermark Recovery

Our goal is to get an estimate of hidden bits, W ′ = {w′(i) | i = 1, · · · , Lw}, at
a low error rate. The histogram extracted from the low-frequency coefficients in
F ′w(x, y) is extracted as in the process of watermark insertion. Suppose that the

86 S. Xiang and H.-J. Kim

number of coefficients in two consecutive bins are a′ and b′. By comparing their
values, we will be able to extract the hidden bit, formulated as

w′(i) =

{

1 if a′/b′ ≥ 1
0 otherwise.

(13)

The same process is repeated to obtain all the hidden bits by computing all
groups of two neighboring bins. In the watermarking decoder, the parameters,
Lw, λ, are beforehand known. Thus, this is a blind watermarking algorithm.

4 Experimental Results

Below, we conduct experiments to demonstrate the performance of the pro-
posed multi-bit watermarking scheme. The watermark is embedded in the low-
frequency subband of 2-level DWT. The wavelet base ′db5′ is adopted. In the
experiments, a 10-bit watermark was embedded into a set of 512× 512 example
images (five of them in total, including Boat, Peppers, Baboon and Lena and
Clock) using the proposed algorithm. The parameter λ = 0.6 is selected to com-
pute the histogram with 20 bins. The embedding threshold, T , is 1.5. We assign
	1 = 	2 = 6% for the reliable watermark recovery.

4.1 Imperceptibility

In the embedding, only a small percent of pixels are modified with a smaller dis-
tortion magnitude (less than 6 gray levels). Since the probability of those selected
samples being added or reduced is approximately equal, the watermark hardly
has an effect on the image mean. The PSNR and mean values are tabulated in
Table 1. Âo and Âw denote the mean before and after watermarking, respectively.
For the five example images, the PSNR is over 40 dB. Usually, we consider that
the watermark being embedded in the low-frequency sub-band will be able to
cause the visual distortion. In order to better evaluate the watermark distortion,
we plot the example images Lena and Peppers and their watermarked versions,
as shown in Fig. 5. We can see that though the watermark is embedded into
the low-frequency component, the distortion is imperceptible. The basic reason
is that the distortion on the low-frequency coefficients has been evenly spread
over times of pixels.

4.2 Robustness

Table 2 shows a list of attacks used to distort the images and their effects on
the watermark in the experiments. In case of Stirmark attacks, the watermark
can resist the cropping of 50%, JPEG compression of the quality factor 60,
and all attacks regarding Affine Transform, Rotation, Rotation+Scale, Rota-
tion+Cropping, and Median filtering.

Geometrically Invariant Image Watermarking in the DWT Domain 87

Table 1. The distortions caused by the watermark in the spatial (denoted by ′S′) and
DWT Domain (denoted by ′D′) (In PSNR and Mean)

Features Boat (S/D) Peppers (S/D) Baboon (S/D) Clock (S/D) Lena (S/D)

Mean (Âo) 117.53/235.06 119.83/239.65 98.84/197.68 70.48/140.88 115.14/230.29

Mean (Âw) 117.51/235.03 119.63/239.26 98.65/197.37 70.58/140.95 115.07/230.15

PSNR (dB) 44.64/44.12 45.02/44.95 46.40/46.40 50.23/50.17 44.99/44.98

Table 2. Watermarking robustness to geometric attacks and common signal processing
operations in the low-frequency subbabd of the DWT domain

Strimarm4.0 BER Checkmark BER

AFFINE (all) 0 Linear Transform 0

CROP (50,75) 0 Aspect Ratio 0

ROT (all) 0 Projective 0

ROTSCALE (all) 0 Warping 0

ROTCROP (all) 0 Shearing 0

MEDIAN (all) 0 Row/Column Removal 0

RML (all) 0 Down/Up Sampling 0

JPEG (15-50) 0.1 JPEG2000 (0.5 ∼ 8.0 bpp) 0

JPEG (60-100) 0 JPEG2000 (0.2 ∼ 0.4 bpp) 0.1

The Checkmark benchmark is one of the second generation watermarking
evaluation tools, which has incorporated some common but challenging geomet-
ric deformation operations, such as RBAs based on projective transform and
image warping. Therefore, here we adopt the Checkmark for measuring the wa-
termark performance to those challenging geometric attacks. In Table 2, the
attack parameters are respectively given as: Linear Transform (T11 = −0.85;
T12 = −0.2; T21 = −0.05; T22 = 1.3), Aspect Ratio (xscale=0.8 yscale=1.1),
projective (30 degree rotation along x-axis + perspective projection), Warping
(warpfactor =12), Shearing (xshear=5% yshear=5%), and Row/Column removal
(12 rows and 9 columns removed) are implemented, respectively. In addition, the
watermark is also robust to Down/Up Sampling and JPEG2000 (with 0.5 bpp,
compression rate of 16:1). We can see that the watermark also has a satisfactory
robustness to those challenging geometric attacks.

Overall, in both the Stirmark and the Checkmark tests we show that in
the low-frequency sub-band of 2-level DWT, the watermark has a satisfactory
robustness to geometric attacks (even those challenging geometric attacks, such
as cropping and RBAs) and common image processing operations (e.g., median
filter, JPEG and JPEG2000 compressions). We believe that it is due to two
main aspects: (i) The histogram-based watermark is insensitive to the shifting
of the pixels on the image plane since the histogram is independent of the pixel
position. As a result, the watermark is insensitive to those challenging geometric
attacks and (ii) in the low-frequency sub-band of DWT, the watermark has a
potential capability against those noise-like image processing operations.

88 S. Xiang and H.-J. Kim

Fig. 5. The original example images and the marked ones (resolution of 44%): (a) Lena
(F), (b) Peppers, (c) Lena after watermarking, (d) Peppers after watermarking

5 Concluding Remarks

In both the theoretical analysis and the extensive experiments, in this paper we
show that i) the histogram shape is insensitive to various geometric deformations,
and ii) the histogram shape invariance property can be extended to the low-
frequency sub-band of the DWT domain. Accordingly, a geometrically invariant
image watermarking scheme is successfully designed by using the histogram
shape invariance in the DWT domain. Extensive experimental works have shown
that the watermark has a satisfactory robustness performance for those chal-
lenging geometric attacks (e.g., projective transform, image warping and random

Geometrically Invariant Image Watermarking in the DWT Domain 89

cropping). The watermark also achieves good robustness against those common
image processing operations, such as JPEG compression, JPEG2000 compres-
sion, median filters, etc.

In theory, the watermark’s embedding capacity is at most 128 bits. In practice,
the watermark can achieve a satisfactory robustness only when the embedding
capacity is less than 20 bits according to our observations. The more the em-
bedding capacity, the lower the watermark robustness. Thus, how to improve
data embedding capacity is a consideration of future works. In addition, our
proposed watermarking scheme is suffering from its performance limitation for
the image of smaller size since a smaller image can not provide efficient samples
to satisfy the condition that the bins hold enough samples. Another note is that
the proposed watermarking algorithm is not working well for those high-contrast
images, which usually have a distinctive histogram.

Since the algorithm is very robust to geometric deformations under the con-
straint of visual coherence, we consider that our proposed watermarking scheme
can combine with other robust watermarking algorithms together for better re-
sisting those challenging geometric attacks and common image signal processing
operations.

Acknowledgement

This work was supported by the Second Brain Korea 21 Project, and the MIC
(Ministry of Information and Communication), Korea, under the ITRC (Infor-
mation Technology Research Center) support program supervised by the IITA
(Institute of Information Technology Advancement)” (IITA-2006-(C1090-0603-
0025)).

References

1. Cox, I.J., Kilian, J., Leighton, T., Shamoon, T.: Secure Spread Spectrum Water-
marking for Multimedia. IEEE Transaction on Image Proccess 6(6), 1673–1687
(1997)

2. Johnson, N., Duric, Z., Jajodia, S.: Recovery of Watermarks from Distorted Images.
In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 318–332. Springer, Heidelberg
(2000)

3. Davoine, F.: Triangular Meshes: A Solution to Resist to Geometric Distortions
Based Watermark-Removal Softwares. In: Proc. Eurasip. Signal Processing Con-
ference, vol. 3, pp. 493–496 (2000)

4. Ruanaidh, J., Pun, T.: Rotation, Scale and Translation Invariant Spread Spectrum
Digital Image Watermarking. Signal Processing 66(3), 303–317 (1998)

5. Lin, C.Y., Wu, M., Bloom, J., Miller, M., Cox, I., Lui, Y.M.: Rotation, Scale, and
Translation Resilient Public Watermarking for Images. IEEE Transaction on Image
Processing 10(5), 767–782 (2001)

6. Zheng, D., Zhao, J., Saddik, A.: RST-Invariant Digital Image Watermarking Based
on Log-Polar Mapping And Phase Correlation. IEEE Transactions on Circuits and
Systems for Video Technology 13(8), 753–765 (2003)

90 S. Xiang and H.-J. Kim

7. Pereira, S., Pun, T.: Robust Template Matching for Affine Resistant Image Wa-
termarks. IEEE Transaction on Image Processing 9(6), 1123–1129 (2000)

8. Kang, X., Huang, J., Shi, Y., Lin, Y.: A DWT-DFT Composite Watermarking
scheme Robust to Both Affine Transform and JPEG Compression. IEEE Transac-
tions on Circuits and Systems for Video Technology 13(8), 776–786 (2003)

9. Herrigel, A., Voloshynovskiy, S., Rytsar, Y.: The Watermark Template Attack. In:
Proc. SPIE Electronic Imaging (2001)

10. Kim, H.S., Lee, H.K.: Invariant Image Watermark Using Zernike Moments. IEEE
Transaction on Circuits and Systems for Video Technology 13(8), 766–775 (2003)

11. Alghoniemy, M., Tewfik, A.H.: Geometric Invariance in Image Watermarking.
IEEE Transactions on Image Processing 13(2), 145–153 (2004)

12. Dong, P., Brankov, J.G., Galatsanos, N.P., Yang, Y.Y., Davoine, F.: Affine Trans-
formation Resistant Watermarking Based on Image Normalizaton. IEEE Transac-
tions on Image Processing 14(12), 2140–2150 (2005)

13. Lu, C.S., Sun, S.W., Hsu, C.Y., Chang, P.C.: Media Hash-Dependent Image Water-
marking Resilient Against Both Geometric Attacks and Estimation Attacks Based
on False Positive-Oriented Detection. IEEE Transactions on Multimedia 8(4), 668–
685 (2006)

14. Seo, J.S., Yoo, C.D.: Image Watermarking Based on Invariant Regions of Scale-
Space Representation. IEEE Transactions on Sginal Processing 54(4), 1537–1549
(2006)

15. http://www.cl.cam.ac.uk/∼fapp2/watermarking/stirmark/
16. http://watermarking.unige.ch/Checkmark/

17. Yeo, I.K., Kim, H.J.: Generalized Patchwork Algorithm for Image Watermarking.
Multimedia System 9(3), 261–265 (2003)

18. Coltuc, D., Bolon, P.: Watermarking by Histogram Specification. In: Proc. SPIE
International Conference on Security and Watermarking of Multimedia Contents
II, pp. 252–263 (1999)

19. Coltuc, D., Bolon, P., Chassery, J.M.: Fragile and Robust Watermarking by His-
togram Specification. In: Proc. SPIE International Conference Security and Wa-
termarking of Multimedia Contents IV, vol. 4675, pp. 701–710 (2002)

20. Lee, S., Suh, Y., Ho, Y.: Lossless Data Hiding Based on Histogram Modification
of Difference Images. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004.
LNCS, vol. 3333, pp. 340–347. Springer, Heidelberg (2004)

21. Licks, V., Jordan, R.: Geometric Attacks on Image Watermarking Systems. IEEE
Multimedia 12(3), 68–78 (2005)

22. Xiang, S., Huang, J., Yang, R.: Time-scale Invariant Audio Watermarking Based on
the Statistical Features in Time Domain. In: Proc. of Information Hiding workshop
(June 2006)

23. Xiang, S., Kim, H.J.: An Invariant Image Watermarking Against Geometric At-
tacks. In: Proc. International Joint Workshop on Information Security and Its
Applications (February 2007)

http://www.cl.cam.ac.uk/~fapp2/watermarking/stirmark/
http://watermarking.unige.ch/Checkmark/

Implementation of LSM-Based RBAC Module

for Embedded System

Jae-Deok Lim1, Sung-Kyong Un1, Jeong-Nyeo Kim1, and ChoelHoon Lee2

1 Electronics and Telecommunications Research Institute (ETRI)
161 Gajung-dong, Yuseong-gu, Daejeon 305-700, Korea

{jdscol92,skun,jnkim}@etri.re.kr
2 Computer Science & Engineering, Chungnam National University

220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea
clee@cnu.ac.kr

Abstract. Security requirements of the embedded system which were
not considered when the embedded system is independently deployed are
being increased because the embedded system is connected to an internet.
Accordingly, the coverage of the system security is being expanded from
the general server to the embedded system. And it is not enough that
the embedded system supports only its inherent functions and it becomes
the essential element to provide the security function to the embedded
system. This paper implements the Role Based Access Control(RBAC)
module which is designed using the Linux Security Module(LSM) for
the embedded system. RBAC allows security management to be admin-
istrated easily and LSM is a lightweight, general purpose, access control
framework for mainstream Linux kernel that enables many different ac-
cess control models. The combination of RABC and LSM properties is
very suitable for one of security solutions of embedded system because of
the simplicity and flexibility of RBAC and a lightweight loadable mecha-
nism of LSM. And we show the performance of our implementation that
has very small overhead for the intended processing and is acceptable.

1 Introduction

The embedded system market is gradually enlarged to the request increment
of the terminal performing the specific purpose. Particularly, the network-based
service is generalized around the mobile personal digital assistants and the de-
mand about the network service is more increased as the personal digital as-
sistants have the high spec and high performance including the Smart phone,
Ultra mobile PC(UMPC), Portable Multimedia Player(PMP), and etc. The us-
age of the internet service heightens the possibility of the external invasion and
the sensitive personal data including the bank account, user certificates, personal
address book, record of utilization, and etc. can be taken out stored in small and
medium embedded system such as the personal digital assistant or the settop
box, and etc. The embedded system using the internet service needs the security
requirement which was not considered when being employed excluding network
function.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 91–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

92 J.-D. Lim et al.

In fact the Fsecure Mobile Anti-virus site reports that the total number of
mobile malware rose up to 344 by the end of December 2006[1]. Particularly
F-Secure’s research lab received samples of new mobile spying tools, running on
Windows Mobile and Symbian S60 3rd Edition devices in May, 2007. According
to the classification of a malware, the Trojan horse type occupied 76.6% to a
most and the worm type occupied about 15.8%. Some of actually discovered
viruses from [1] are as follows. Doomboot.A disguises as the crack file of the
doom2 which is the game for the cellular phone and is distributed widely. The
phone operation is interrupted in an infection and it has the information stored
in the terminal and the concern losing data in a recovery. Pbstealer.A disguises
as the useful utility and infects cellular phone. And it leaks the phone book data
information of the corresponding terminal. Sendtool.A installs some of Trojan
horse codes pretending to the useful program. And it is propagated through
the bluetooth. To correspond to the threats as in the above, it is needed that
the security function for protecting data and operating environment as well as
the original function of embedded system, especially access control function.

This paper tries to strengthen the security of the embedded system by ap-
plying the Role Based Access Control(RBAC) function to the embedded linux
to be used as OS of the embedded system and the role-based access control is
implemented based on the Linux Security Module(LSM) framework and then
able to be easily applied to the embedded system. In this paper, it is called
L-RBAC that the implementation of role-based access control model using LSM
framework.

RBAC is suitable to the access control model for an embedded system because
of being the model which is more advantageous than the other access control
model such as Discretionary Access Control (DAC) and Mandatory Access Con-
trol(MAC) as to the management and use[2][3]. DAC is an access policy that
restricts access to files(and other system objects such as directories, devices, and
IPC) based on the identity of users and/or the groups to which they belong. DAC
is commonly implemented by Access Control List(ACL) and also is suitable for
small system which has little users and resources. But DAC has the security
hole that its policy can be modified and ignored without any restriction by user
who has the super user right, that is ’root’ user in linux system. Most malwares
can acquire the super user right with various ways for example buffer-over-flow.
RBAC provides the role based and strengthened access control function and is
one of the access control models which is applied in order to intensify the se-
curity of the system. In RBAC, access to object by a subject is determined by
role not the identity of subject. And it is the access control model providing
the convenience of the management and many flexibilities unlike DAC, MAC,
and etc. to the policy manager. A role is defined as the job function about the
various tasks. Users are assigned to roles, permissions are assigned to roles and
users acquire permissions by being members of roles.

The LSM framework meets the goal of enabling many different security models
with the same base Linux kernel while minimally impacting the Linux kernel[4].
The generality of LSM permits enhanced access controls to be effectively

Implementation of LSM-Based RBAC Module for Embedded System 93

implemented without requiring kernel patches. LSM also permits the existing
security functionality of POSIX.1e capabilities to be cleanly separated from the
base kernel. This allows users with specialized needs, such as embedded system
developers, to reduce security features to a minimum for performance. So the
combination of RABC and LSM properties is very suitable for one of security
solutions of embedded system. Of cause LSM-based RBAC can be also applied
to the general linux system such as servers and desktops. This paper shows that
the LSM-based RBAC model is suitable for the embedded system and can be
one solution for securing the embedded system.

The LSM is a lightweight, general purpose, access control framework for the
mainstream Linux kernel that enables many different access control models to
be implemented as loadable kernel modules. And a number of existing enhanced
access control implementations have already been adapted to use the LSM frame-
work, for example, POSIX.1e capabilities[5], SELinux[6], and Domain and Type
Enforcement (DTE)[7]. Although SELinux supports RBAC, it was mainly de-
signed for a desktop or a server. And it is not suitable for the embedded system
because it has the difficulty of an operation and setting up and is the use of the
concept complicated with the Type Enforcement, the MultiLevel Security, and
etc.

The rest of this paper is organized as follows. A brief description of standard
of RBAC is contained in section 2. Section 3 describes the design and imple-
mentation of L-RBAC module. Section 4 describes the performance overhead of
L-RBAC. Section 5 shows the example of L-RBAC application. Finally conclu-
sions and future work are discussed in section 6.

2 Standard of Role-Based Access Control

The standard for RBAC is proposed by NIST to have unified ideas from prior
RBAC models, commercial products, and research prototypes[8]. It is intended
to serve as a foundation for product development, evaluation, and procurement
specification.

The RBAC reference model from [8] is defined in terms of four model compo-
nents – Core RBAC, Hierarchical RBAC, Static Separation of Duty Relations,
and Dynamic Separation of Duty Relations. Core RBAC defines a minimum
collection of RBAC elements, element sets, and relations in order to completely
achieve a Role-Based Access Control system. This includes user-role assignment
and permission-role assignment relations, considered fundamental in any RBAC
system. In addition, Core RBAC introduces the concept of role activation as
part of a user’s session within a computer system. Core RBAC is required in
any RBAC system, but the other components are independent of each other
and may be implemented separately. The Hierarchical RBAC component adds
relations for supporting role hierarchies. A hierarchy is mathematically a partial
order defining a seniority relation between roles, whereby senior roles acquire
the permissions of their juniors and junior roles acquire users of their seniors.

94 J.-D. Lim et al.

Separations of duty relations are used to enforce conflict of interest policies.
Conflict of interest in a role-based access control system may arise as a result
of a user gaining authorization for permissions associated with conflicting roles.
Static Separation of Duty(SSD) Relations adds exclusivity relations among roles
with respect to user assignments. A common example is that of Static Separation
of Duty (SSD) that defines mutually disjoint user assignments with respect to
sets of roles. Dynamic Separation of Duty(DSD) Relations defines exclusivity
relations with respect to roles that are activated as part of a user’s session. DSD
properties provide extended support for the principle of least privilege in that
each user has different levels of permission at different times, depending on the
role being performed.

In addition to [8], there is RBAC implementation standard of draft version
0.1[9]. The draft describes the requirement of RBAC implementation and re-
quires that Administrative Commands and Supporting System Functions for
Core RBAC must be provided at least.

In this paper, we comply with NIST RBAC standard and requirements[8][9];
that is, core RBAC component and separation of duty component are provided.

3 Design and Implementation of L-RBAC

L-RBAC was designed simply for the embedded system and designed in order
to be satisfied the RBAC standard features[8]. Table 1 shows the function of a
standard requesting and the function provided by L-RBAC.

STD-6.2 property, a hierarchy, is more suitable to the large server system
which is used by multi-user and multi-tasking. But it may not be suitable to the
embedded system which is mostly used by the single user. Therefore, the STD-
6.2 property is excluded in our design. The core component, STD-6.1 property,
must be provided in any RBAC and applied to our design though the commands
shown at table 1 and the libraries corresponding to each command. Figure 1
shows the access policy between subject and object with role. The assumption

Table 1. The L-RBAC functions according to the Standard of RBAC

Command of L-RBAC Standard number

System role : addrole, delrole, getallrole STD-6.1 (Core RBAC)

User role : seturole, geturole STD-6.1 (Core RBAC)

Process role : setprole, getprole STD-6.1 (Core RBAC)

Object role : setfrole, getfrole STD-6.1 (Core RBAC)

setssd, getssd STD-6.3.1 (SSD relations)

setdsd, getdsd STD-6.3.2 (DSD relations)

setcrole, getcrole Cardinality (additional supported)

Implementation of LSM-Based RBAC Module for Embedded System 95

Oj_anySi

ORj_anySi ORj_rSRi

ORj_rwSRi ORj_rwxSRi

rwx

rrwx
wx

rw
x rwx

(a) Case that RBAC is not applied

(b) Case that RBAC is applied

Fig. 1. Access model between subject and object. (a) Traditional situation. Subject S
can do any type of access to object O if S has the ownership of O. (b) Secure situation.
Subject S can do an only accepted type of access to object O if S has the permission of
role assigned to O. In this case, S cannot access to O if S does not have the permission
of role assigned to O even though S has the ownership to O

of Fig.1 is that S has the ownership to O, that is, a subject S can do any type
of access to object O if O does not be set any role.

The meaning of symbols and assumption is as follows.

- Si : a subject i
- SRi : a subject i which has a permission of role R
- Oj mode : an object j with mode permission. mode indicate r for read, w
for write, x for execute and any for any permission type.
- ORj mode : an object j assigned role R with mode permission but not
assigned any role. mode is the same above.

STD-6.3.1 and STD-6.3.2 show Static Separation of Duty (SSD) relations and
Dynamic Separation of Duties(DSD) relations respectively. For example, if role1
and role2 were set up in SSD, they cannot be assigned to a user or an object
simultaneously. And if role1 and role2 are set up in DSD, they cannot be acti-
vated at the same time but can be assigned to a user or an object. In our design,
L-RBAC also provides the Cardinality that is the limitation of assignment of
role. If role1 is set up in Cardinality with 3, the role1 cannot be assigned 4
times at the same time. This property can be used to prevent from abusing of
role.

Now, we describe the implementation of L-RBAC with LSM properties.
Figure 2 shows the architecture of L-RBAC. The process of enforcement is
started from the request of LSM hooks. LSM allows module to mediate access
to kernel objects by placing hooks in the kernel code just ahead of the access,
as shown in left side of Fig.2[4]. Just before the kernel would have accessed an
internal object, a hook makes a call to a function that the L-RBAC module

96 J.-D. Lim et al.

User Space

Kernel Space

DB mgr

syscall

Enforcer

ResultRequest
L-RBAC

module

get/setResult

get/set Result

Security
DB

Read/
Write

LIB
(Library)

User
command

/proc driver

(interface)

ResultRequest

ResultRequest

syscall

Error check

DAC check

LSM hook

Execute code

Return

OK

OK

OK

Error

Deny

Deny
Request

Allow/Deny

User Level Process

Fig. 2. The architecture of L-RBAC. There are two pathes for enforcement and man-
agement. Enforcement is requested from LSM hooks and Management is requested
from /proc device driver.

must provide. The L-RBAC module can either let the access granted or denied
forcing an error code return. LSM is the security framework of the kernel level
provided from the linux kernel 2.6 and more. And LSM has total 88 hooks and
calls the function provided by the LSM module in the place where it is necessary
to have the security check including the program loading, the file access, the
IPC use, and etc. L-RBAC module consists of enforcer for determining access,
DB manager for searching and setting security DB, system call and /proc device
driver interface for managing RBAC.

As shown Fig.2, RBAC management is achieved through /proc device driver.
Each management command such as addrole, delrole and so on calls a correspon-
dent system call and system call request a correspondent action to DB manager.
DB manager modify or update the security DB and response to requester. Secu-
rity DB stores the information that is used to determine if an access is granted
or denied, in-cluding inode of object, role assigned to object, the device in which
object is. To speed up to search DB, it is constructed by 4 hash list and is loaded
into kernel mem-ory when L-RBAC is initialized.

Implementation of LSM-Based RBAC Module for Embedded System 97

4 Performance Overhead

The performance overhead of L-RBAC module is explained in this section.
The overhead imposed by such a model is a composite of the LSM framework
overhead and the actual RBAC enforcement overhead. We had two tests, mac-
robenchmark on PC and microbenchmark on target system.

At First we use the widely used kernel compilation benchmark for mac-
robenchmark, measuring the time to build the Linux Kernel. We ran this test
on a Pentium IV 3.00Ghz processor with 1 GB RAM. The conditions of this
test are that there is no network activity, caches are flushed(that is rebooted),
compiled with pre-configured ‘.config’ file and measurement values are acquired
with time command. Table 2 shows the macrobenchmark test result. As shown
at Table 2, the L-RBAC has 1.45% overhead at system space, 0.1% overhead
at user space and just 0.24% overhead totally. We think that it is acceptable
compared to the overhead of LSM only, 0–0.3%[4].

Table 2. The result of kernel compilation macrobenchmark

Space Without L-RBAC(time) With L-RBAC(time) Overhead

Real(user+sys) 31m 41.067s 31m 45.691s 0.24%

User 28m 15.110s 28m 16.774s 0.1%

Sys 1m 58.371s 2m 0.092s 1.45%

Table 3. The result of kernel compilation macrobenchmark

Syscall Without L-RBAC(time) With L-RBAC(time) Overhead

Open/close 11.8310ms 12.6815ms 7.2%

Stat 7.4214ms 8.0136ms 8.0%

Fork/exit 3,263.5000ms 3,263.5000ms 0%

Fork/exec 3,442.0000ms 3,438.5000ms -0.1%

Secondly we used LMBench for microbenchmarking[10]. LMBench was devel-
oped specifically to measure the performance of core kernel system calls and
facilities, such as file access, context switching, and memory access. We ran this
test on a X-Hyper270A embedded system which is based on Intel PXA270 pro-
cessor. It has the performance of the low power and high-end (520MHz) and then
can be used for the mobile related products group. In addition, it also supports
the Linux 2.6.11 and can use the LSM security framework. In target system,
the macrobenmark (Kernel Soruce Compilation) is unable to be used due to the
resources restriction of the Target System like the PC Version. Table 3 shows

98 J.-D. Lim et al.

the result of a microbenchmark test and the values are the mean value at each
test after 100 time repetition.

In [4], the open/close overhead of LSM only is 2.7% and that of L-RBAC is
7.2%. But the test of [4] was on high-end level system and just for LSM module
without RBAC function and the test of L-RBAC was on low-end embedded
system and for LSM module with RBAC function. So the overhead of L-RBAC
is very acceptable.

5 Example of Application

In this section, the example in which the RBAC model is applied to the per-
sonal digital assistant such as smart phone which is the representative kind of the
embedded system is illustrated. The current mobile smart phone provides var-
ious internet-based services and then stores personal data such as the personal
identification number and authentication information etc. for the internet-based
services.

Figure 3(a) shows the process of the personal information being taken out from
the smart phone by the Trojan horse when using the internet service. Hacker
inserts the malicious code into the popular programs like games and uploads the
modified programs. The inserted malicious code can have the activities like the
Trojan horse having the personal information outflow function. And then, user
downloads the modified program into the smart phone and executes it. At this
time, regardless of the original program operation, the malicious code accesses
the personal information and delivers it to the hacker not knowing to the owner
of smart phone. This example that is shown at Fig.3(a) can be enough issued
with the malware and/or malicious software which is illustrated in section 1.

Figure 3(b) shows the process of protecting the personal information from the
attack of the method as in the above by applying RBAC. A role is assigned to
personal data like Fig.3(b) in advance for access control with RBAC by using
one of L-RBAC commands introduced at Table 1, setfrole which can assign a
permission to an object with a role. Now the only subject that has an assigned
role to object can access the object. A malicious code tries to access the personal
data through the process like Fig.3(a). The access request is captured by LSM
hook in kernel and then the request is passed to the Enforcer of L-RBAC with
the subject ID and object ID. Enforcer requests the access decision to the DB
manager. DB manager determines if the access is granted or denied through
the security DB. At this time, the object assigned the permission of a role and
subject hoes not has a role, so DB manager returns that this access should be
denied. Like this process, L-RBAC module determines the access based on a role
and permission assigned to the data and a role assigned to the malicious code
that tries to access the data. In this case, the malicious code does not have a
role that is able to access to data because it is the abnormal program. So the
malicious code cannot access the personalization data protected with a role. The
example in this section is very simple model in which RBAC is applied, but the
effectiveness is very good.

Implementation of LSM-Based RBAC Module for Embedded System 99

Address list,
Certification,

Account,
…

Address list,
Certification,

Account,
…

execution

Download the infected
contents(game etc.)

with malware Web server

Hacker’s host

Upload the infected
contents(game etc.)

with malware

InternetInternet

Address list,
Certification,

Account,
…

Address list,
Certification,

Account,
…

execution

Download the infected
contents(game etc.)

with malware Web server

Hacker’s host

Upload the infected
contents(game etc.)

with malware

ROLE

X

InternetInternet

Setfrole –a RW {objects} ROLE

(a) Service without L-RBAC

(b) Service with L-RBAC

Fig. 3. The example of L-RBAC application. In (a), personal data can be taken out by
the Trajan horse. In (b), personal data can be protected by role of L-RBAC policy. The
data had been set to be only accessed by the subject with role of ROLE. But malware
code cannot access the data because it has been executed abnormally and then cannot
have any role.

6 Conclusion

The embedded system is the particular system for the specific purpose. At the
past, most embedded system was the stand-alone type and focused on perform-
ing function of the system itself. Now the network-based service is generalized

100 J.-D. Lim et al.

around the mobile personal digital assistants and the demand about the network
service has been more increased. The usage of the internet service heightens the
possibility of the external invasion and the sensitive personal data including the
financial information, user certificates, personal address book, record of utiliza-
tion, and etc. can be taken out stored in small and medium embedded system.
In fact there are reported the presence of malicious code for embedded system
especially mobile phones. Therefore, the system resources and the user data are
needed to be safely protected from these crackings even though it is embedded
system.

This paper tries to strengthen the security of the embedded system by apply-
ing the Role Based Access Control(RBAC) function to the embedded linux to
be used as OS of the embedded system and the role-based access control is im-
plemented based on the Linux Security Module(LSM) framework and then able
to be easily applied to the embedded system. The combination of RABC and
LSM properties is very suitable for one of security solutions of embedded system
because of the simplicity and flexibility of RBAC and a lightweight loadable
mechanism of LSM.

Although we introduced the simple example of application of RBAC for mobile
smart phone, there is few practical application of RBAC for embedded system
including home network devices, car computing system and so on as well as
mobile assistants. So it should be studied that the specified application model
of RBAC which is suitable for the various embedded computing environments
such as home networking, car computing, sensor networking and so on.

References

1. F-Secure Mobile Anti-virus, http://mobile.f-secure.com/
2. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based Access Con-

trol models. IEEE Computer 29(2), 38–47 (1996)
3. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based Access Control: Features and mo-

tivations. In: Annual Computer Security Applications Conference, IEEE Computer
Society Press, Los Alamitos (1995)

4. Wright, C., Cowan, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux Security
Modules: General Security Support for the Linux Kernel. In: Proceedings of the
11th USENIX Security Symposium, pp. 17–31 (2002)

5. Trumper, W.: Summary about POSIX.1e (1999),
http://wt.xpilot.org/publications/posix.1e

6. Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Andersen, D., Lepreau, J.: The
Flask Security Architecture: System Support for Diverse Security Policies. In: Pro-
ceedings of the Eighth USENIX Security Symposium, pp. 123–139 (1999)

7. Hallyn, S., Kearns, P.: Domain and Type Enforcement for Linux. In: Proceedings
of the 4th Annual Linux Showcase and Conference (2000)

8. American National Standard for Information Technology – Role Based Access Con-
trol. ANSI/INCITS 359-2004 (2004)

http://mobile.f-secure.com/
http://wt.xpilot.org/publications/posix.1e

Implementation of LSM-Based RBAC Module for Embedded System 101

9. Role Based Access Control Implementation Standard Version 0.1. draft-rbac-
implementation-std-v01 (2006), http://csrc.nist.gov/rbac

10. McVoy, L.W., Staelin, C.: lmbench: Portable Tools for Performance Analysis. In:
USENIX Annual Technical Conference (1996),
http://www.bitmover.com/lmbench/

http://csrc.nist.gov/rbac
http://www.bitmover.com/lmbench/

Iteration Bound Analysis and Throughput

Optimum Architecture of SHA-256 (384,512) for
Hardware Implementations

Yong Ki Lee1, Herwin Chan1, and Ingrid Verbauwhede1,2

1 University of California, Los Angeles, USA
2 Katholieke Universiteit Leuven, Belgium
{jfirst,herwin,ingrid}@ee.ucla.edu

Abstract. The hash algorithm forms the basis of many popular cryp-
tographic protocols and it is therefore important to find throughput
optimal implementations. Though there have been numerous published
papers proposing high throughput architectures, none of them have
claimed to be optimal. In this paper, we perform iteration bound anal-
ysis on the SHA2 family of hash algorithms. Using this technique, we
are able to both calculate the theoretical maximum throughput and de-
termine the architecture that achieves this throughput. In addition to
providing the throughput optimal architecture for SHA2, the techniques
presented can also be used to analyze and design optimal architectures
for some other iterative hash algorithms.

Keywords: SHA-256 (384,512), Iteration Bound Analysis, Throughput
Optimum Architecture.

1 Introduction

Hash algorithms produce a fixed size code independent of input size of mes-
sages. Generated codes from hash algorithms are commonly used for digital
signature [1] and message authentication. Since the hash outputs are relatively
small compared to the original messages, the hash algorithms take an impor-
tant roll for computation efficiency. Considering the increasing data amount to
store or communicate, the throughput of hash algorithms is an important factor.
Common hash algorithms include SHA1, MD5, SHA2 family (SHA256, SHA384
and SHA512) and RMD family (RMD160, RMD256 and RMD320). The SHA2
family of hash algorithms [2] has become of particular interest lately due the
official support of the National Institute of Standards and Technology (NIST)
in 2002.

Even though many publications were produced to show high throughput archi-
tectures of SHA2, there has been no mathematical analysis of the delay bound.
In this paper, we analyze the iteration bound analysis of SHA2, which gives us
the maximum theoretical throughput achievable by the algorithm. Knowing the
iteration bound not only allows the designer a goal to design towards, but also
signals the designer when an optimal architecture has been achieved.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 102–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Iteration Bound Analysis and Throughput Optimum Architecture 103

The remainder of this paper is organized as follows. We start with review-
ing related work in Section 2 and introduce the iteration bound analysis and
transformations in Section 3. In Section 4, we analyze the iteration bound of
the SHA2 family of hash algorithms and show the procedure to design through-
put optimum architectures. Some comments for implementation and synthesis
results are given in Section 5 followed by the conclusion in Section 6.

2 Related Works

The most common techniques for high throughput hardware implementations of
hash algorithms are pipelining, unrolling and using Carry Save Adder (CSA).
Pipelining techniques are used in [4,5,6,7], unrolling techniques are used in
[7,8,9,10], and CSA techniques are used in [4,5,6,7,10,11]. Some other interesting
implementations can be found in [12,13].

Even though there are many published papers, the mathematical analysis of
the iteration bound has rarely been performed. For example, even though the
iteration bound for SHA2 was achieved in [4], no analysis or proof of optimal-
ity was given. Since there is no proof of theoretical optimality and systematic
approach to achieve the optimality, many architectures seem to count on the
designers’ intuition. Actually the work of [4] achieved the theoretical optimum
after another work [5]. Therefore, this work will not only prevent a futile attempt
to design architecture achieving better throughput than the theoretical optimum
but also will guide designers to achieve the theoretical optimum throughput in
MD4-based hash algorithms.

3 The Iteration Bound Analysis and Transformations

The SHA2 family of hash algorithms are iterative algorithms, which means the
output of one iteration is the input of the next. We use a Data Flow Graph
(DFG) to represent dependencies. We continuously apply the techniques of re-
timing and unfolding to achieve the iteration bound. Even though the optimized
SHA2 family of hash algorithms requires only the retiming transformations, both
transformations are briefly discussed for a better understanding of the analysis
technique. Some of the MD4-based hash algorithms may require the unfolding
transformation. A more detailed discussion of the iteration bound and the trans-
formations can be found in [3].

3.1 DFG Representation

The mathematical expression of our example is given in Eq. 1. A and B are vari-
ables which are stored in registers and the indices of the variables represent the
number of iterations of the algorithm. C1 and C2 are some constants. According
to the equation, the next values of variables are updated using the current values
of variables and constants. This type of equations is very common in MD4-based
hash algorithms.

104 Y.K. Lee, H. Chan, and I. Verbauwhede

A(n + 1) = A(n) + B(n) ∗ C1 ∗ C2 (1)
B(n + 1) = A(n)

The DFG of Eq. 1 is shown in Fig. 1. Box A and B represent registers which
give the output at cycle n, and circles represent some functional nodes which
perform the given functional operations. A D on edges represents an algorithmic
delay, i.e. a delay that cannot be removed from the system. Next to algorithmic
delays, nodes also have functional delays. We express the functional delays, i.e.
the delays to perform the given operations, of + and ∗ as Prop(+) and Prop(∗)
respectively. The binary operators, + and ∗, can be arbitrary operators but we
assume Prop(+) < Prop(∗) in this example. The iteration bound analysis starts
with an assumption that any functional operation is atomic. This means that
a functional operation can not be split or merged into some other functional
operations.

3.2 The Iteration Bound Analysis

A loop is defined as a path that begins and ends at the same node. In the DFG
in Fig. 1, A−−→ +−−−−→

D
A and A−−−−→

D
B−−→ ∗−−→ ∗−−→ +−−−−→

D
A are the

loops. The loop calculation time is defined as the sum of the functional delays
in a loop. If tl is the loop calculation time and wl is the number of algorithmic
delays in the l-th loop, the l-th loop bound is defined as tl/wl. The iteration
bound is defined as follows:

T∞ = max
l∈L

{

tl
wl

}

(2)

where L is the set of all possible loops. The iteration bound creates a link between
the arithmetic delay and the functional delay. It is the theoretical limit of a
DFG’s delay bound. Therefore, it defines the maximally attainable throughput.
Please note that every loop needs to have at least one algorithmic delay in the
loop otherwise the system is not causal and cannot be executed.

Fig. 1. An example of DFG

Iteration Bound Analysis and Throughput Optimum Architecture 105

Since the loop marked with bold line has the maximum loop delay assuming
that Prop(+) < Prop(∗), the iteration bound is as follows:

T∞ = max
{

Prop(+),
P rop(+) + 2 × Prop(∗)

2

}

(3)

=
Prop(+) + 2 × Prop(∗)

2
This means that a critical path delay in this DFG can not be less than this

iteration bound. The critical path delay is defined as the maximum calculation
delay between any two consecutive algorithmic delays, i.e. D’s. In our example
(Fig. 1), the critical path delay is Prop(+) + 2 × Prop(∗) which is larger than
the iteration bound. The maximum clock frequency (and thus throughput) is
determined by the critical path (the slowest path). The iteration bound is a
theoretical lower bound on the critical path delay of an algorithm. We use the
retiming and unfolding transformations to reach this lower bound.

3.3 The Retiming Transformation

The minimum critical path delay that can be possibly achieved using the retim-
ing transformation is shown in Eq. 4.

�T∞� =
⌈

Prop(+) + 2 × Prop(∗)
2

⌉

= Prop(+) + Prop(∗) (4)

Assuming that a functional node can not be split into multiple parts, �·� is the
maximum part when Prop(+) + 2 × Prop(∗) is evenly distributed into N parts,
where N is the number of algorithmic delays in a loop. This is denoted by the
2 in our example and sits in the denominator. Since the total delay Prop(+) +
2 × Prop(∗) can be partitioned into one delay Prop(+)+ Prop(∗) and the other
delay Prop(∗), the attainable delay bound by the retiming transformation is
Prop(+) + Prop(∗).

The retiming transformation modifies a DFG by moving algorithmic delays,
i.e. D’s, through the functional nodes in the graph. Delays of out-going edges
can be replaced with delays from in-coming edges and vice versa. Fig. 2 shows
the retiming transformation steps performed on Fig. 1.

Based on the + node in Fig. 1, the delay of the out-going edge is replaced
with delays of the in-coming edges resulting in Fig. 2(a). Note that the out-going
edges and the in-coming edges must be dealt as a set. By performing one more
retiming transformation based on the left ∗ node in Fig. 2(a), we obtain the
DFG of Fig. 2(b). Therefore, the critical path becomes the path in bold between
the two bolded D’s in Fig. 2(b) and its delay is reduced to Prop(+) + Prop(∗)
which is the same as Eq. 4. However, the iteration bound still has not been met.

3.4 The Unfolding Transformation

The unfolding transformation improves performance by calculating several iter-
ations in a single cycle. For the unfolding transformation we expand the Eq. 1
by representing two iterations at a time, which results in Eq. 5.

106 Y.K. Lee, H. Chan, and I. Verbauwhede

(a) Retimed based on +

(b) Retimed based on ∗

Fig. 2. Retiming Transformation

A(n + 2) = A(n + 1) + B(n + 1) ∗ C1 ∗ C2

= A(n) + B(n) ∗ C1 ∗ C2 + A(n) ∗ C1 ∗ C2 (5)
B(n + 2) = A(n + 1) = A(n) + B(n) ∗ C1 ∗ C2

Note that now A(n+2) and B(n+2) are expressed as a function of A(n) and
B(n). By introducing a temporary variable Tmp, Eq. 5 can be simplified into
Eq. 6.

Tmp(n) = A(n) + B(n) ∗ C1 ∗ C2

A(n + 2) = Tmp(n) + A(n) ∗ C1 ∗ C2 (6)
B(n + 2) = Tmp(n)

By doubling the number of functional nodes, we are able to unfold the DFG
by a factor of two (Fig. 3(a)). Box A and B now give the outputs of every
second iteration. By applying the retiming transformation to the unfolded DFG,
the resulting critical path becomes the path in bold between the two bolded
D’s which is D → + → A → ∗ → ∗ → D (Fig. 3(b)). Therefore, the critical
path delay is Prop(+) + 2 × Prop(∗). Due to the unfolding factor of two, the

Iteration Bound Analysis and Throughput Optimum Architecture 107

(a) Unfolding Transformation

(b) Retiming Transformation

Fig. 3. Unfolding and Retiming Transformation

normalized critical path delay, T̂ , can be calculated by dividing the critical path
delay by two as shown in Eq. 7.

T̂ =
Prop(+) + 2 × Prop(∗)

2
= T∞ (7)

This final transformation results in an architecture that achieves the iteration
bound of the example DFG (Fig. 1).

108 Y.K. Lee, H. Chan, and I. Verbauwhede

Now the only remaining step is the implementation of the resulting DFG.
Note that some of the square nodes are not any more paired with an algorithmic
delay, which can be seen in Fig. 3(b). The explanation about how this issue is
dealt with during implementation will be given in Section 5 where we synthesize
the SHA2 family hash algorithms.

4 Iteration Bound Analysis and Throughput Optimum
Architecture of SHA2

The SHA2 family of hash algorithms is composed of three parts: the padding,
expander and compressor [2]. The padding extends an input message to be a
whole number of 512-bit (for SHA-256) or 1024-bit (for SHA-384 and SHA-512)
message blocks. The expander enlarges input messages of 16 words into 64 (for
SHA-256) or 80 (for SHA-384 or SHA-512) words. The compressor encodes the
expanded message into 256, 384 or 512 bits depending on the algorithm. For one
message block, the required iterations are 64 (for SHA-256) or 80 (for SHA-384
or SHA-512).

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Σ
{256}
0 (x) = ROTR2(x)⊕ROTR13(x)⊕ROTR22(x)

Σ
{256}
1 (x) = ROTR6(x)⊕ROTR11(x)⊕ROTR25(x)

σ
{256}
0 (x) = ROTR7(x)⊕ROTR18(x)⊕ SHR3(x)

σ
{256}
1 (x) = ROTR17(x)⊕ROTR19(x)⊕ SHR10(x)

(a) SHA-256 Functions

Wt =

{

M
(i)
t 0 ≤ t ≤ 15

σ
{256}
1 (Wt−2) + Wt−7 + σ

{256}
0 (Wt−15) + Wt−16 16 ≤ t ≤ 63

(b) SHA-256 Expend Computation

T1 = h + Σ
{256}
1 (e) + Ch(e, f, g) + K

{256}
t + Wt

T2 = Σ
{256}
0 (a) + Maj(a, b, c)

h = g
g = f
f = e
e = d + T1

d = c
c = b
b = a
a = T1 + T2

(c) SHA-256 Compress Computation

Fig. 4. SHA-256 Hash Computation

Iteration Bound Analysis and Throughput Optimum Architecture 109

In this paper, we consider only the implementation of the expander and com-
pressor. Though the expander can be performed before the compressor, we chose
to implement it to perform dynamically during compression in order to increase
the overall throughput and minimize the gate area.

Fig. 4 describes the SHA-256 algorithm on which a DFG will be derived based.
Since all the SHA2 family hash algorithms have the same architecture except
for input, output and word sizes, constants, non-linear scrambling functions, i.e.
Σ0, Σ1, Maj, Ch, σ0 and σ1, and the number of the iterations, they can be
expressed in the same DFG.

4.1 DFG of SHA2 Compressor

Since within one iteration the order of additions in SHA2 does not affect the
results, there are several possible DFG’s. For example, (a+ b)+ c and (b+ c)+a
are equivalent in mathematics but will have different DFG’s. As a starting point,
the DFG having the minimum iteration bound must be chosen, transformations
are then performed to find the architecture that achieves this bound. In SHA2
compressor, since there are only 7 adders, finding a DFG having the minimum
iteration bound is not difficult as long as we understand how to calculate the
iteration bound.

The DFG in Fig. 5 is a straightforward DFG. The shaded loop indicates the
loop having the largest loop bound and gives the following iteration bound.

T (5)
∞ = max

l∈L

{

tl
wl

}

= 3 × Prop(+) + Prop(Ch) (8)

However, by reordering the sequence of additions, the DFG of Fig. 6 can be
obtained which has the smallest iteration bound. As we assume that Prop(Σ0)
≈ Prop(Maj) ≈ Prop(Σ1) ≈ Prop(Ch), the two bolded loops have the same
maximum loop bound. Since the loop bound of the left hand side loop can-
not be reduced further, no further reduction in the iteration bound is possible.
Therefore, the iteration bound of Fig. 6 is as follows.

T (6)
∞ = max

l∈L

{

tl
wl

}

= 2 × Prop(+) + Prop(Ch) (9)

If we assume that any operation in the DFG cannot be merged or split into
other operations, the iteration bound of SHA2 is Eq. 9. However, if we are allowed
to use a Carrier Save Adder (CSA), we can substitute two consecutive adders
with one CSA and one adder. Since CSA requires less propagation delay than
an adder, we replace adders with CSA’s if it is possible. The resulting DFG is
shown in Fig. 7. Note that some of the adders are not replaced with CSA since
doing so would increase the iteration bound. Therefore, the final iteration bound
is achieved as Eq. 10.

T (7)
∞ = max

l∈L

{

tl
wl

}

= Prop(+) + Prop(CSA) + Prop(Ch) (10)

110 Y.K. Lee, H. Chan, and I. Verbauwhede

Σ0 Σ1

.

Fig. 5. Basic SHA2 Compressor DFG

Σ0 Σ1 . .

Fig. 6. Optimized SHA2 Compressor DFG

Σ0 Σ1 . .

Fig. 7. Optimized SHA2 Compressor DFG with CSA

Iteration Bound Analysis and Throughput Optimum Architecture 111

Σ0 Σ1 . .

Fig. 8. Final SHA2 Compressor DFG with Retiming Transformation

In the next step, we perform transformations. Since there is no fraction in the
iteration bound, we do not need the unfolding transformation. Only the retiming
transformation is necessary to achieve the iteration bound. The retimed DFG
achieving the iteration bound is depicted in Fig. 8. Note that the indexes of Kt+2

and Wt+3 are changed due to the retiming transformation. In order to remove
the ROM access time for Kt+2, which is a constant value from ROM, we place
an algorithmic delay, i.e. D, in front of Kt+2. This does not change the function.

4.2 DFG of SHA2 Expander

A straightforward DFG of the SHA2 expander is given in Fig. 9(a). Even though
the iteration bound of the expander is much less than the compressor, we do not
need to minimize the expander’s critical path delay less than the compressor’s it-
eration bound (the throughput is bounded by the compressor’s iteration bound).
Fig. 9(b) shows a DFG with CSA, and Fig. 9(c) shows a DFG with the retiming
transformation where the critical path delay is Prop(+).

5 Implementation and Synthesis Results

In the DFG of Fig. 8, some of the register values, i.e. A, B, ..., H , are no longer
paired with an algorithmic delay D. For example, there is no algorithmic delay
between registers F and H . Therefore, the values of H will be the same as F
except for the first two cycles: in the first cycle, the value of H should be the
initialized value of H according to the SHA2 algorithm; in the second cycle the
value of H should be the initialized value of G. Therefore, the value of F will be
directly used as an input of the following CSA.

Another register management problem is found in the path from the register
H to the register A which includes four algorithmic delays. Therefore, register A
has to hold its initial value until an effective value of H reaches to the register A,
which means the register A must hold the first three cycles and then it can update

112 Y.K. Lee, H. Chan, and I. Verbauwhede

(a) Basic DFG

(b) DFG with CSA

(c) Retiming Transformed DFG with CSA

Fig. 9. SHA2 Expander DFG

with a new value. This causes overhead of three extra cycles. Therefore the total
number of cycles required for one message block is the number of iterations plus
one cycle for initialization and finalization plus three overhead cycles due to the
retiming transformation, which results in 68 cycles for SHA256 and 84 cycles for
SHA384 and SHA512.

We synthesized SHA2 for an ASIC by Synopsys Design Vision using a 0.13μm
standard cell library whose results and a comparison with other works are shown
in Table 1. The throughputs are calculated using the following equation.

Throughput256 = Frequency
of Cycles × (512 bits) (11)

Throughput384,512 = Frequency
of Cycles × (1024 bits)

Note that our purpose of the synthesis is not to beat the throughput record
but to verify our architecture by checking the correct hash outputs and the ac-
tual critical path. Since our HDL programming is done at register transfer level
and we have mostly concentrated on optimizing micro-architecture rather than
focusing lower-level optimization, some other reported results, e.g. [4], achieve

Iteration Bound Analysis and Throughput Optimum Architecture 113

Table 1. Synthesis Results and Comparison of SHA2 Family Hashes

Algorithm
Technology Area Frequency

Cycles
Throughput

(ASIC) (Gates) (MHz) (Mbps)

[14] SHA256 0.18μm 22,000 200 65 1,575

[13]
SHA256

0.13μm
15,329 333.3 72 2,370

SHA384/512 27,297 250.0 88 2,909

[4] SHA256 0.13μm N/A >1,000 69 >7,420

Our SHA256
0.13μm

22,025 793.6 68 5,975
Results SHA384/512 43,330 746.2 84 9,096

*All our proposals include all the registers and ROM.

better performance with the same iteration bound delay. However the iteration
bound analysis still determines the optimum high level architecture of an algo-
rithm.

6 Conclusion

We analyzed the iteration bound of the SHA-256 (384,512) hash algorithms and
showed architectures achieving the iteration bound. Since the iteration bound is
a theoretical limit, there will be no further throughput optimization in micro-
architecture level. We also synthesized our design to verify the correctness of
our architecture design. Moreover, we illustrated detailed steps from a straight-
forward DFG to a throughput optimized architecture. This approach will guide
how to optimize some other iterative hash algorithms in throughput.

Acknowledgments. This work is supported by NSF CCF-0541472, FWO and
funds from Katholieke Universiteit Leuven.

References

1. Digital Signature Standard. National Institute of Standards and Technology.
Federal Information Processing Standards Publication 186-2,
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

2. Secure Hash Standard. National Institute of Standards and Technology. Federal
Information Processing Standards Publication 180-2,
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

3. Parhi, K.K.: VLSI Digital Signal Processing Systems: Design and Implementation,
pp. 43–61, 119–140. Wiley, Chichester (1999)

4. Dadda, L., Macchetti, M., Owen, J.: An ASIC design for a high speed implemen-
tation of the hash function SHA-256 (384, 512). In: ACM Great Lakes Symposium
on VLSI, pp. 421–425 (2004)

5. Dadda, L., Macchetti, M., Owen, J.: The design of a high speed ASIC unit for the
hash function SHA-256 (384, 512). In: DATE 2004. Proceedings of the conference
on Design, Automation and Test in Europe, pp. 70–75. IEEE Computer Society
Press, Los Alamitos (2004)

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

114 Y.K. Lee, H. Chan, and I. Verbauwhede

6. Macchetti, M., Dadda, L.: Quasi-pipelined hash circuits. In: ARITH 2005. Proceed-
ings of the 17th IEEE Symposium on Computer Arithmetic, pp. 222–229 (2005)

7. McEvoy, R.P., Crowe, F.M., Murphy, C.C., Marnane, W.P.: Optimisation of the
SHA-2 Family of Hah Functions on FPGAs. In: ISVLSI 2006. Proceedings of the
2006 Emerging VLAI Technologies and Architectures, pp. 317–322 (2006)

8. Michail, H., Kakarountas, A.P., Koufopavlou, O., Goutis, C.E.: A Low-Power and
High-Throughput Implementation of the SHA-1 Hash Function. In: ISCAS 2005.
IEEE International Symposium on Circuits and Systems, pp. 4086–4089 (2005)

9. Crowe, F., Daly, A., Marnane, W.: Single-chip FPGA implementation of a crypto-
graphic co-processor. In: FPT 2004. Proceedings of the International Conference
on Field Programmable Technology, pp. 279–285 (2004)

10. Lien, R., Grembowski, T., Gaj, K.: A 1 Gbit/s partially unrolled architecture of
hash functions SHA-1 and SHA-512. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS,
vol. 2964, pp. 324–338. Springer, Heidelberg (2004)

11. Ming-yan, Y., Tong, Z., Jin-xiang, W., Yi-zheng, Y.: An Efficient ASIC Implemen-
tation of SHA-1 Engine for TPM. In: The 2004 IEEE Asia-Pacific Conference on
Circuits and Systems, pp. 873–876 (2004)

12. Ganesh, T.S., Sudarshan, T.S.B.: ASIC Implementation of a Unified Hardware
Architecture for Non-Key Based Cryptographic Hash Primitives. In: ITCC 2005.
Proceedings of the International Conference on Information Technology: Coding
and Computing, pp. 580–585 (2005)

13. Satoh, A., Inoue, T.: ASIC-Hardware-Focused Comparison for Hash Functions
MD5, RIPEMD-160, and SHS. In: ITCC 2005. Proceedings of the International
Conference on Information Technology: Coding and Computing, pp. 532–537
(2005)

14. Helion IP Core Products. Helion Technology http://heliontech.com/core.htm

http://heliontech.com/core.htm

A Compact Architecture for Montgomery

Elliptic Curve Scalar Multiplication Processor

Yong Ki Lee1 and Ingrid Verbauwhede1,2

1 University of California, Los Angeles, USA
2 Katholieke Universiteit Leuven, Belgium

{jfirst,ingrid}@ee.ucla.edu

Abstract. We propose a compact architecture of a Montgomery elliptic
curve scalar multiplier in a projective coordinate system over GF (2m).
To minimize the gate area of the architecture, we use the common Z
projective coordinate system where a common Z value is kept for two
elliptic curve points during the calculations, which results in one register
reduction. In addition, by reusing the registers we are able to reduce two
more registers. Therefore, we reduce the number of registers required for
elliptic curve processor from 9 to 6 (a 33%). Moreover, a unidirectional
circular shift register file reduces the complexity of the register file, re-
sulting in a further 17% reduction of total gate area in our design. As
a result, the total gate area is 13.2k gates with 314k cycles which is the
smallest compared to the previous works.

Keywords: Compact Elliptic Curve Processor, Montgomery Scalar
Multiplication.

1 Introduction

Even though the technology of ASIC advances and its implementation cost
decreases steadily, compact implementations of security engines are still a chal-
lenging issue. RFID (Radio Frequency IDentification) systems, smart card sys-
tems and sensor networks are good examples which need very compact security
implementations. Public key cryptography algorithms seem especially taxing for
such applications. However, for some security properties such as randomized
authentications and digital signatures, the use of public key cryptography algo-
rithms is often inevitable. Among public key cryptography algorithms, elliptic
curve cryptography is a good candidate due to its efficient computation and
relatively small key size.

In this paper, we propose an architecture for compact elliptic curve multiplica-
tion processors using the Montgomery algorithm [1]. The Montgomery algorithm
is one of the most popular algorithms in elliptic curve scalar multiplication due
to its resistance to side-channel attack. We use the projective coordinate system
to avoid inverse operations.

In order to minimize the system size, we propose new formulae for the com-
mon projective coordinate system where all the Z-coordinate values are equal.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 115–127, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

116 Y.K. Lee and I. Verbauwhede

When we use López-Dahab’s Montgomery scalar multiplication algorithm [2],
two elliptic curve points must be kept where X and Z-coordinate values for each
point. Therefore, by the use of the common Z projective coordinate property,
one register for a Z-coordinate can be reduced. Considering that the register
size is quite large, e.g. 163, reducing even one register is a very effective way
to minimize the gate area. Moreover, efficient register management by reuse of
the registers makes it possible to reduce two additional registers. Therefore, we
reduce three registers out of nine in total compared to a conventional architec-
ture. In addition, we design a unidirectional circular shift register file to reduce
the complexity of the register file. While the multiplexer complexity of a register
file increases as the square of the number of the registers, that of our register
file is a small constant. Therefore, the proposed register file architecture effec-
tively reduces the overall area. Though the register file is small (6 registers) an
additional 17% of gate area is reduced using this technique. We also show the
synthesis results for various digit sizes where the smallest area is 13.2k gates
with the cycles of 314k.

The remainder of this paper is organized as follows. In Section 2, we review the
background on which our work is based. In Section 3, the common Z projective
coordinate system is introduced and its corresponding formulae are given. The
proposed system architecture and the synthesis results are shown in Section 4
and Section 5 followed by the conclusion in Section 6.

2 Background

2.1 López-Dahab’s Montgomery Scalar Multiplication

In this section we introduce López-Dahab’s Montgomery scalar multiplication
algorithm, which uses a projective coordinate system [2]. The algorithm is shown
in Fig. 1. A non-supersingular elliptic curve E over GF (2m) is the set of coordi-
native points (x, y) satisfying y2 + xy = x3 + ax2 + b with the point at infinity
O, where a, b, x, y ∈ GF (2m) and b �= 0.

Input: A point P = (x, y) ∈ E and a positive integer k = 2l−1 + Σl−2
i=0ki2

i

Output: Q = kP

1. if (k = 0 or x = 0) then output (0, 0) and stop
2. X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2

3. for i = l − 2 to 0 do
if ki = 1 then

(X1, Z1)← Madd(X1, Z1, X2, Z2), (X2, Z2)← Mdouble(X2, Z2)
else (X2, Z2)← Madd(X2, Z2, X1, Z1), (X1, Z1)← Mdouble(X1, Z1)

4. return Q← Mxy(X1, Z1, X2, Z2)

Fig. 1. Montgomery scalar multiplication with López-Dahab algorithm

A Compact Architecture for Montgomery Elliptic Curve 117

The adding formula of (XAdd, ZAdd) ← Madd(X1, Z1, X2, Z2) is defined in
Eq. 1.

ZAdd = (X1 × Z2 +X2 × Z1)2 (1)
XAdd = x× ZAdd + (X1 × Z2)× (X2 × Z1)

The doubling formula of (XDouble, ZDouble)← Mdouble(X2, Z2) is defined in
Eq. 2.

ZDouble = (X2 × Z2)2 (2)
XDouble = X4

2 + b× Z4
2

Q ← Mxy(X1, Z1, X2, Z2) is the conversion of projective coordinate to affine
coordinate. López-Dahab’s adding and doubling algorithms are described in
Fig. 2 where c2 = b.

The total number of registers in Fig. 2 is six, i.e. the registers for X1, Z1,
X2, Z2, T1 and T2. The total field operations of Adding Algorithm are 4 mul-
tiplications, 1 square and 2 additions, and those of Doubling Algorithm are 2
multiplications, 4 squares and 1 addition. Note that it is not necessary to main-
tain Y -coordinate during the iterations since it can be derived at the end of the
iterations.

Adding Algorithm Doubling Algorithm
(X1, Z1)← Madd(X1, Z1, X2, Z2) (X, Z)← Mdouble(X, Z)

1. T1 ← x 1. T1 ← c
2. X1 ← X1 × Z2 2. X ← X2

3. Z1 ← Z1 ×X2 3. Z ← Z2

4. T2 ← X1 × Z1 4. T1 ← Z × T1

5. Z1 ← Z1 + X1 5. Z ← Z ×X
6. Z1 ← Z2

1 6. T1 ← T 2
1

7. X1 ← Z1 × T1 7. X ← X2

8. X1 ← X1 + T2 8. X ← X + T1

Fig. 2. López-Dahab’s Adding and Doubling Algorithms

2.2 Modular Arithmetic Logic Unit (MALU) and Elliptic Curve
Processor Architecture

In order to perform the field operations, i.e. the multiplications, squares and
additions in Fig. 2, we need an Arithmetic Logic Unit (ALU). Fig. 3 shows the
MALU architecture of K. Sakiyama et al [5]. This is a compact architecture
which performs the arithmetic field operations as shown in Eq. 3.

C(x) = A(x) ∗B(x) mod P (x) if cmd = 1 (3)
C(x) = B(x) + C(x) mod P (x) if cmd = 0

where A(x) = Σaix
i, B(x) = Σbix

i, C(x) = Σcix
i and P (x) = x163 +x7 +x6 +

x3 + 1.

118 Y.K. Lee and I. Verbauwhede

(a) MALU Architecture (b) Cell Architecture

Fig. 3. MALU Architecture

Fig. 4. MALU based Elliptic Curve Processor Architecture

d is the digit size and the number of cells. The square operation uses the same
logic as the multiplication by duplicating the operand. The arithmetic multipli-
cation and addition take

⌈

163
d

⌉

and one cycle respectively. The benefit of this
architecture is that the multiplication, the square and the addition operations
share the XOR array and by increasing the digit size, the MALU can be easily
scaled. The architecture of our ALU starts from this MALU.

ECP (Elliptic Curve Processor) architecture based on MALU is shown in
Fig. 4 [6]. Note that in Fig. 4, ALU is implemented with MALU and hence
includes three registers, and RAM contains five words of 163 bit size.

A Compact Architecture for Montgomery Elliptic Curve 119

2.3 Implementation Consideration

If López-Dahab’s Montgomery scalar multiplication algorithm is implemented
using Sakiyama’s MALU in a conventional way, the total number of registers is
9, i.e. 3 registers for MALU plus 6 registers for the Montgomery scalar multipli-
cation. In [6], 3 registers and 5 RAMs are used (8 memory elements in total).
One register is reduced by modifying López-Dahab’s algorithm and assuming
that constants are loadable directly to the MALU without using a register. In
our architecture, we are able to reduce the number of registers to 6 even without
constraining ourselves to these assumptions. This was accomplished by observ-
ing the fact that the area of a scalar multiplier is dominated by register area.
Note that the registers occupy more than 80% of the gate area in a conventional
architecture. Therefore, reducing the number of the registers and the complexity
of the register file is a very effective way to minimize the total gate area.

Accordingly, our compact architecture is achieved in two folds: reducing the
number of registers (one register reduction by using the common Z projective
coordinate system and two register reduction by register reuse) and reducing the
register file complexity by designing a unidirectional circular shift register file.

3 Common Z Projective Coordinate System

We propose new formulae for the common Z projective coordinate system where
the Z values of two elliptic curve points in Montgomery scalar multiplication are
kept to be the same during the process. New formulae for the common Z pro-
jective coordinate system have been proposed over prime fields in [3]. However,
this work is still different from ours in that first, they made new formulae over
prime field while ours is over binary polynomial field and second, they made
new formulae to reduce the computation amount in special addition chain while
our formulae slightly increase the computation amount in order to reduce the
number of the registers. Please note that reducing even one register decreases
the total gate area considerably.

Since in López-Dahab’s algorithm, two elliptic curve points must be main-
tained, the required number of registers for this is four (X1, Z1, X2 and Z2).
Including two temporary registers (T1 and T2), the total number of registers is
six. The idea of the common Z projective coordinate system is to make sure that
Z1 = Z2 at each iteration of López-Dahab’s algorithm. The condition at the be-
ginning of the iterations is satisfied since the algorithm starts the iterations with
the initialization of Z1 = Z2 = 1. Even if Z1 �= Z2, we can make it satisfy this
condition using three field multiplications as shown in Eq. 4 where the resulting
coordinate set is (X1, X2, Z).

X1 ← X1 × Z2

X2 ← X2 × Z1 (4)
Z ← Z1 × Z2

120 Y.K. Lee and I. Verbauwhede

Table 1. The comparison between the original and the modified formulas

The original equation The new equation assuming Z = Z1 = Z2

ZAdd = (X1 × Z2 + X2 × Z1)
2 ZAdd = (X1 + X2)

2

XAdd = x× ZAdd + (X1 × Z2)× (X2 × Z1) XAdd = x× ZAdd + X1 ×X2

Since we now assume Z1 = Z2, we can start the Adding Algorithm with
the common Z projective coordinate system. With Z = Z1 = Z2, Eq. 1 is
re-represented as shown in Eq. 5. Now ZAdd and XAdd have a common factor
of Z2.

ZAdd = (X1 × Z2 +X2 × Z1)2 = (X1 +X2)2 × Z2

XAdd = x× ZAdd + (X1 × Z2)× (X2 × Z1) (5)
= x× ZAdd + (X1 ×X2 × Z2)

Due to the property of the projective coordinate system, we can divide ZAdd

and XAdd by the common factor of Z2. The comparison of the original equation
and the modified equation is shown in Table 1. Note that the new formula of
the Adding Algorithm is independent of the previous Z-coordinate value.

In Doubling Algorithm, there is no such reduction since it deals with only
one elliptic curve point. Nevertheless, we can simplify the Doubling Algorithm
by noticing that T 2

1 +X2 ≡ (T1 +X)2 at the steps of 6, 7 and 8 in Fig. 2. One
field multiplication can be reduced using this mathematical equality. The Eq. 2
is re-represented in Eq. 6 where c2 = b.

ZDouble = (X2 × Z)2 (6)
XDouble = (X2

2 + c× Z2)2

Note that the resulting Z-coordinate values are different between Adding and
Doubling formulae. In order to maintain a common Z-coordinate value, some
extra steps similar to Eq. 4 are required. These extra steps must follow every
pair of Adding and Doubling Algorithm. The final mathematical expression and
its algorithm are shown in Eq. 7 and Fig. 5 respectively.

X1 ← XAddZDouble =
{

x(X1 +X2)2 +X1X2

}

(X2Z)2 ;P1← P1 + P2

X2 ← XDoubleZAdd = (X2
2 + cZ2)2(X1 +X2)2 ;P2← 2× P2 (7)

Z ← ZAddZDouble = (X1 +X2)2(X2Z)2 ; The new common Z-coordinate

In Fig. 5 we mark with (T1) at each square operation to indicate that the
T1 register is free to store some other value. The reason for this will be obvious
in the next section. The comparison of the amount of field operations between
López-Dahab’s algorithm and our algorithm is shown in Table 2.

Noting that the multiplication and the square are equivalent in the MALU
operation, the workload of our algorithm is the same as that of López-Dahab’s
algorithm and we still reduce one register.

A Compact Architecture for Montgomery Elliptic Curve 121

Adding Algorithm Doubling Algorithm Extra Steps

1. T2 ← X1 + X2 1. X2 ← X2
2 (T1) 1. X1 ← X1 × Z

2. T2 ← T 2
2 (T1) 2. Z ← Z2 (T1) 2. X2 ← X2 × T2

3. T1 ← X1 ×X2 3. T1 ← c 3. Z ← Z × T2

4. X1 ← x 4. T1 ← Z × T1

5. X1 ← T2 ×X1 5. Z ← Z ×X2

6. X1 ← X1 + T1 6. X2 ← X2 + T1

7. X2 ← X2
2 (T1)

Fig. 5. Proposing Adding and Doubling Algorithms

Table 2. Comparison of the computational workload

Field Operation López-Dahab’s algorithm Our algorithm

Multiplication 6 7

Square 5 4

Addition 3 3

4 Proposing System Architecture

4.1 Arithmetic Logic Unit (ALU) Architecture

The ALU architecture in Fig. 6 is similar to MALU in Fig. 3. The only difference
is in the placement of the registers and the control outside the ALU block.
Therefore, the ALU block is equivalent to an array of cells in Fig. 3. The reason
we separate the registers from the ALU block is for the reuse of the registers.
Note that at the completion of the multiplication or addition operation, only the
register Reg1 is updated while the registers Reg2 and Reg3 are remained as the
beginning of the operations. Therefore, Reg2 and Reg3 can be used not only to
store field operands but also to store some values of the proposed Adding and
Doubling algorithm where we need five registers for X1, X2, Z, T1, and T2 in
Fig. 5.

Fig. 6. ALU Architecture

122 Y.K. Lee and I. Verbauwhede

A care should be taken at this point since the same value must be placed in
the both of Reg2 and Reg3 for squaring. Therefore, during squaring, only one
register can be reused. This fact would conflict with our purpose to reuse each of
Reg2 and Reg3 as a storage of the adding and doubling algorithm. Fortunately,
it is possible to free one of the registers to hold another value during squaring.
As shown in Fig. 5, T1 can be reused whenever a square operation is required.

In Fig. 6, the control line Ctl1 signals the command (multiplication or addi-
tion) and the last iteration of the multiplication. When ALU performs a multi-
plication, each digit of d bits of Reg2 must be entered into ALU in order. Instead
of addressing each digit of the 163 bit word, the most significant digit (MSD) is
entered and a circular shift of d bits is performed. The shift operation must be
circular and the last shift must be the remainder of 163/d since the value must
be kept as the initial value at the end of the operation. During performing the
ALU operation, an intermediate result is stored in Reg1. Reg1, Reg2 and Reg3
are comparable with C, A and B in Fig. 3 respectively.

4.2 Circular Shift Register File Architecture

By reusing the registers, we reduce two of the registers in the previous sub-
Section. This causes that all the registers should be organized in single register
file. Therefore, the register file of our system consists of six registers. In our reg-
ister file architecture, we use a circular shift register file with a minimum number
of operations. The multiplexer complexity of a randomly accessible register file
increases as the square of the number of registers. On the other hand, since the
multiplexer complexity of a circular shift register file is a constant, this model
effectively reduces the total gate area.

The operations defined in Fig. 7 are the minimum operations such that any
replacement or reordering of the register values can be achieved. Since only Reg1
gets multiple inputs, only one multiplexer of fixed size is necessary.

Note that Reg1, Reg2 and Reg3 in Fig. 7 are the three registers which are
connected to the ALU in Fig. 6. The assignment operation loads the constants
of elliptic curve parameters into Reg1 which is the only register to be assigned
a constant value. The shift operation shifts the register values in circular and
the switch operation switches the values of Reg1 and Reg2. The copy operation
replaces the value of Reg1 with Reg2. Note that the copy operation is required
for the field square operation which is implemented as the field multiplication
with two operands of the same value.

4.3 Overall System Architecture

The overall system architecture is shown in Fig. 8. Elliptic curve point add and
doubler (EC Add&Doubler) consists of Control 1, ALU and the register file.
Control 1 includes the hard-wired elliptic curve parameters and manages the
register file. Control 2 detects the first bit of 1 in Key (or a scalar) and controls
EC Add&Doubler depending on the Key values of the later bits according to the
Montgomery algorithm in Fig. 1. Key and Tester are placed outside Montgomery

A Compact Architecture for Montgomery Elliptic Curve 123

<Assignment Operation>

<Shift Operation>

<Switch Operation>

<Copy Operation>

Fig. 7. Operations and Architecture of Register File

Fig. 8. Overall System Architecture

scalar multiplier. We assume that Key can be addressable in single bit and the
addressed bit is forwarded into Control 2. Control 2 also generates the Ready
signal to indicate when the final outputs ofX1,X2 and Z are ready. The outputs
are compared with the pre-computed results in Tester.

In our system, we suppose that the coordinate conversion into affine coordi-
nate system and calculation of Y -coordinate value are performed in the counter-
part of this system if it is needed. If we assume that this system is implemented
in RFID tags, the counter part can be a tag reader or back-end system.

124 Y.K. Lee and I. Verbauwhede

Step Field Operation Command Reg1 Reg2 Reg3 Reg4 Reg5 Reg6

(1) Initial X1 X2 Z – – –

(2) Shift – X1 X2 Z – –

(3) Copy X1 X1 X2 Z – –

(4) 1. T2 ← X1 + X2 Add T2 X1 X2 Z – –

(5) Shift – T2 X1 X2 Z –

(6) Copy T2 T2 X1 X2 Z –

(7) Shift – T2 T2 X1 X2 Z

(8) 2. T2 ← T 2
2 Multiply T2 – – X1 X2 Z

(9) Shift∗4 – X1 X2 Z T2 –

(10) 3. T1 ← X1 ×X2 Multiply T1 – X2 Z T2 –

(11) Switch – T1 X2 Z T2 –

(12) 4. X1 ← x Load x X1 T1 X2 Z T2 –

(13) Shift∗2 T2 – X1 T1 X2 Z

(14) Switch – T2 X1 T1 X2 Z

(15) 5. X1 ← T2 ×X1 Multiply X1 T2 – T1 X2 Z

(16) Switch T2 X1 – T1 X2 Z

(17) Shift∗5 X1 – T1 X2 Z T2

(18) 6. X1 ← X1 + T1 Add X1 – T1 X2 Z T2

Fig. 9. Register File Management for Adding Algorithm

4.4 Register File Management for Algorithm Implementation

For better understanding how the system works, the register file management of
Adding Algorithm of Fig. 5 is shown in Fig. 9. Note that when the algorithm is
actually implemented, some more detailed controls are required. In this example,
only the register file rearrangement is shown. Remember that the field addition
and multiplication are performed as Reg1← Reg2× Reg3 and Reg1← Reg1 +
Reg3 respectively. Initially, we assume that the arrangement of register values
are as step (1) in Fig. 9, and that Reg4, Reg5 and Reg6 are not available (marked
as –) since meaningful values are not stored yet. The commands of Assign, Shift,
Switch and Copy work as described in Fig. 7 and the rearrangements of register
values are shown in each step. Note that Shift∗4 is the abbreviation of four
times Shift operation and some register values are changed to be – when the old
values are not used any more. The rest of the Montgomery scalar multiplication
algorithm can be also described similarly.

In fact, the use of this register file increases the number of cycles due to the
control overhead. However, considering that a field multiplication takes a large
number of cycles, the number of overhead cycles is relatively small. Note that
a field multiplication requires 163 cycles for 163 bit words and the digit size of
1 (reference Fig. 3 for the digit size). We compare synthesis results for various
cases in the following section.

A Compact Architecture for Montgomery Elliptic Curve 125

5 Synthesis Results

In order to verify our algorithm and architecture, we synthesized the proposed
architecture using TSMC 0.18μm standard cell library. Summarized results are
shown in Table 3. While version 1 uses a randomly accessible register file, the
other versions use the circular shift register file which is shown in the previous
section. Comparing version 1 with version 2, we can see how changing the register
file management strategy can effectively reduce the area (17% reduction of total
gate area). The use of the circular shift register file requires more cycles. However,
if we increase the digit size into 4 (version 5), a much smaller number of cycles
can be achieved with even less gate area.

A comparison with other works is shown in Table 4. Since the architecture
of [4] uses an affine coordinate system, it requires only 6 registers but require a
larger number of cycles due to field inverse operations. The ALU of [4] has sep-
arate logic modules for multiplication, square and addition where multiplication
requires 163 cycles and square and addition require 1 cycle.

Except for [6], all the reported results include memory area. In [6], the re-
ported gate area of 8,214 does not include the required RAM area. For a fairer
comparison, we estimate the total gate area assuming that 1 bit memory is equiv-
alent to 10 gate area. Note that 1 bit register require 6 gates and there should
be some extra area for addressing. According to our experiment of synthesis for
a 163 bit register in standard CMOS compilers, the number of gates per bit is
above 10 gates. Even in this under-estimation, our results show much smaller

Table 3. Synthesis Results

Version Digit size (d) Register Type Gate Area Cycle

Ver1 1 Random Access 15,894 295,032

Ver2 1

Circular Shift

13,182 313,901
Ver3 2 14,188 168,911
Ver4 3 14,896 120,581
Ver5 4 15,538 95,521

Table 4. Comparison with other works

Technology Key Size Digit Size Area (Gate) Cycle Memory Units

[7] 0.13 165 – 30,333 545,440 –

[8] 0.13 160 – 28,311 2,500,000 320∗8 bits

[4] – 163 – 15,097 432,000 6∗163 bits

[6] 0.13 163 1
8,214 + 5 RAM

353,710 8∗163 bits
(≈ 16, 364)∗∗

Our Work
0.18 163 1 13,182 313,901 6∗163 bits

(Ver2)

∗∗The gate area of 8,214 does not include RAM area. The gate area of 16,364 is an
estimation including the RAM area.

126 Y.K. Lee and I. Verbauwhede

gate number with a smaller cycle number. This result is obvious considering that
our ALU is similar to [6] and the number of total memory units of our architec-
ture is two less than [6]. In [8], among several implementations, we show the one
having the smallest area, which is still much larger than our results and also has
a much larger number of cycles. As a result, our implementation has not only
the smallest area but also the smallest cycle.

6 Conclusion

We proposed a compact architecture for an elliptic curve scalar multiplier. This
contribution has been achieved by reducing the number of the registers and the
complexity of the register file.

The reduction of the number of the registers is done in two different ap-
proaches. By proposing new formulae for the common Z projective coordinate
system, one register was reduced and by the reuse of the registers, two more
registers were reduced. Accordingly, three registers were reduced in total. The
reduction of the complexity of the register file is done by designing a circular
shift register file.

As a result, for elliptic curve scalar multiplication, only 13.2k gates and 314k
cycles are required. This result not only achieves the smallest area but also the
smallest cycle number compared with fairly comparable architectures. More-
over, our processor architecture is secure against TA (Timing Analysis) and
SPA (Simple Power Analysis) due to the property of Montgomery elliptic curve
scalar multiplication.

Acknowledgments. This work is supported by NSF CCF-0541472, FWO and
funds from Katholieke Universiteit Leuven.

References

1. Montgomery, P.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48, 243–264 (1987)

2. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

3. Meloni, N.: Fast and Secure elliptic Curve Scalar Multiplication Over Prime
Fields Using Special Addition Chains. Cryptology ePrint Archive: listing for 2006
(2006/216) (2006)

4. Paar, C.: Light-Weight Cryptography for Ubiquitous Computing. Invited talk at
the University of California, Los Angeles (UCLA). Institute for Pure and Applied
Mathematics (December 4, 2006)

5. Sakiyama, K., Batina, L., Mentens, N., Preneel, B., Verbauwhede, I.: Small-footprint
ALU for public-key processors for pervasive security. In: Workshop on RFID
Security, 12 pages (2006)

A Compact Architecture for Montgomery Elliptic Curve 127

6. Batina, L., Mentens, N., Sakiyama, K., Preneel, B., Verbauwhede, I.: Low-cost
Elliptic Curve Cryptography for wireless sensor networks. In: Buttyán, L., Gligor,
V., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 6–17. Springer, Heidelberg
(2006)

7. OztÄurk, E.Ä., Sunar, B., Savas, E.: Low-power elliptic curve cryptography using
scaled modular arithmetic. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,
vol. 3156, pp. 92–106. Springer, Heidelberg (2004)

8. Satoh, A., Takano, K.: A Scalable Dual-Field Elliptic Curve Cryptographic Proces-
sor. IEEE Transactions on Computers 52(4), 449–460 (2003)

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 128–141, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Windows Vault: Prevention of Virus Infection and Secret
Leakage with Secure OS and Virtual Machine

Yoshiki Sameshima1, Hideaki Saisho1, Tsutomu Matsumoto2, and Norihisa Komoda3

1 Hitachi Software Engineering, Co., Ltd.
2 Graduate School of Environment and Information Science,

Yokohama National University
3 Graduate School of Information Science and Technology, Osaka University
{same,saisho}@hitachisoft.jp, tsutomu@ynu.ac.jp,

komoda@ist.osaka-u.ac.jp

Abstract. We present an integrated system of two Windows workstations;
while the first workstation is prepared to process secret information, the second
is for non-secret which may contain computer virus, and the two workstations
are integrated into a PC with secure OS, virtual machine and gateways. Since
the two workstations are virtually separated at the physical level, the first
workstation is not infected by virus, nor is secret leaked out to the Internet, even
if the second is infected by unknown virus. Comparing previous work which
realizes complete data isolation for intelligence community, user of the
proposed system can import data securely from the second workstation to
the first through security guaranteed channel between the two workstations. The
user can also read e-mail from the Internet on the first without fear of virus
infection, and as a result the user does not need to be aware that she/he uses the
two workstations.

Keywords: virus, secret leakage, information flow, virtual machine, secure OS.

1 Introduction

The top two IT security threats are virus infection and secret leakage including PC
theft [1-3]. The best practice to prevent virus infection is to use virus protection
software and install security patch. However, the practice is becoming less effective,
because of the following two reasons: The first reason is zero-day attack [2]; the
attack code appears soon after vulnerability is announced, for example the attack code
of MS07-002 appeared three hours later after the patch was released. As a result, virus
definition file cannot be in time. The second reason is targeted attack [4]; while
existing attack codes aim to be spread over many victims, the target of the new attack
is very limited, for example a single organization or few people. As a result, there is
less chance to detect the target attack and the virus definition file may not be issued.

A solution against the virus threat is to utilize secure OS [5, 6]. The OS supports
the Mandatory Access Control (MAC) [7], and the damage of attack to vulnerability

 Windows Vault: Prevention of Virus Infection and Secret Leakage 129

of application is limited only to the application; the attack code cannot access file nor
execute process which are not permitted in security policy, even if the code gets the
administrator privilege. The secure OS is used mainly for server, but not client PC,
because of management of the security policy; it is difficult for end user or system
administrator to configure the security policy specifying which process is permitted to
access to which resources with what kind of operations.

Another solution is behavior based virus detection [8]. Virus has some specific
behavior; some of virus code is encrypted to bypass the virus protection system, and
decryption of code is one of features of the virus. Another virus sends many e-mail
messages of its own copy. The new technology watches such behavior of virus and
detects the virus, but the new virus detection may miss targeted attack, because the
virus targets specific organization or information, and the virus may be tuned so as
not to be detected by such virus protection software.

On the other hand, more serious IT security threat is leakage of secret information
or secret leakage [3]. The main reason of secret leakage is lost of PC or storage
media, but other reason is intentional leakage by authorized user and exposition to the
Internet by virus.

Solutions against secret leakage are file encryption and prohibition of portable
storage media/printer. The Windows OS supports file encryption, and its security
policy can enforce to stop use of USB memory. However, these solutions are not
effective for intentional leakage through e-mail or HTTP by authorized user; it is
possible to stop sending e-mail outside or posting via HTTP, however, this is not
practical for commercial organizations.

NetTop [9, 10] is a countermeasure of the two threats; it is designed for
intelligence community, and the goal is data isolation. User of NetTop accesses
classified information of multiple categories and operates multiple workstations
which are integrated into a single PC with Trusted Linux and Virtual Machine (VM).
The workstations are separated virtually at physical level, so the threats do not
happen. However, the user should always be aware that which workstation she/he is
operating and needs to switch the two workstations. This is acceptable for users of
intelligence community, but it is very troublesome for office workers of commercial
companies.

The authors propose Windows Vault as system isolation which usage is as same as
a normal Windows as possible. The user operates a safe workstation isolated from the
Internet, but she/he can access the external information that comes from the Internet
on the safe workstation without threats of virus infection or secret leakage. The word
‘Vault’ means a room with thick walls and strong doors where valuables can be kept
safely; Windows Vault is a vault running Windows, that is, a Windows workstation
guarded by secure OS and gateways which establish secure data exchange between
the isolated workstation and the external environment including the Internet.

In the paper, the authors describe the architecture of Windows Vault in Section 2,
evaluation of performance, security and usages in Section 3 through 5, compares with
the previous works in Section 6, and conclude in Section 7.

130 Y. Sameshima et al.

2 Windows Vault

2.1 Concepts

The principal of Windows Vault is very simple; data is divided into two categories,
safe secret and unsafe non-secret, and the later includes information on the Internet
and may contain virus. Windows Vault processes the two data categories with two
virtual workstations; Internal Workstation for safe secret, and External Workstation
for unsafe non-secret, and the two workstations are integrated into a single physical
PC with use of VM and secure OS. Network is also divided; Internal Workstation is
connected to Internal Network and External Workstation to External Network
including the Internet.

The above architecture realizes very high level security, as far as user processes the
two categories in completely separated manner. But such use is not realistic. While
main task of user of commercial company is processed on Internal Workstation, the
user also needs to access the Internet and utilize information of the Internet as part of
secret; text on Web and spread sheet data attached to e-mail from business partner are
examples of such information. It is also desirable to use a single e-mail client; the user
does not want to use two clients on Internal and External Workstations, because it is
different from the current e-mail client usage. As for web browser, the other most
used network application, it is normal that user operates multiple browser windows,
and it is desirable that the user can operate browser window accessing a site on the
Internet in the same operation of the window on Internal Network. As a result, the
following functions are required with security guaranteed form:

(1) Data import: data is imported from External Workstation to Internal Workstation.
(2) Mail retrieval and sending on Internal Workstation: user operates e-mail client on

Internal Workstation, retrieves and sends messages with the client from/to Internal
and External Networks.

(3) Browsing Internet sites from Internal Workstation: user operates web browser on
External Workstation from Internal Workstation.

With the above functions, the user needs to use Internal Workstation only and
she/he can process information on External Workstation on Internal Workstation.
Four gateways connect the two workstations and realize secure channel between the
two workstations for e-mail and copy & paste operation. In the following, the overall
architecture, platform OS, and four gateways are described.

2.2 Overall Architecture

The overall architecture of Windows Vault is shown in Figure 1. Platform OS is the
base of security, and we adopt the Security-Enhanced Linux (SELinux) [6], which
supports the MAC based on the Type Enforcement model. Each of Internal and
External Workstations consists of VM, Windows OS, and applications.

Two LANs, Internal and External Networks, are connected to Platform OS. It is
assumed that the network devices connected to Internal Network are managed, that is,
only identified and authorized devices are connected to the network, and virus
infected PCs are not connected.

 Windows Vault: Prevention of Virus Infection and Secret Leakage 131

 IW: Internal W/S

Windows EW: External W/S

Vault AP: Application

 …

 Internal Network External Network

IW EW

 …

PC hardware

Platform OS

VM

Windows OS

G
atew

ay

Firewall

VM

Windows OS

Server Server

Internet

AP AP AP AP… …

Fig. 1. Architecture of Windows Vault

Windows Vault

IN: Internal Network

EN: External Network

IW: Internal W/S

EW: External W/S

IN EN

Virtual IN Virtual EN

POP Gateway

Clipboard Gateway

Terminal Gateway

EWIW

Display Gateway

Fig. 2. Gateways on Virtual Internal Networks

The virtual networks on Platform OS are configured as shown in Figure 2; Internal
Workstation is connected to Internal Network and the virtual Internal Network, so on
External Workstation, and each gateway is connected to the virtual networks and
External Network. Data exchanged between Internal and External Workstations is
limited only through the gateways by the configuration of Platform OS.

2.3 Platform OS

In order to prevent user from changing configuration of Platform OS, direct access to
Platform OS must be prohibited. The following configuration realizes this:

(1) The default run level is changed to level 4.
(2) The init process starts services required to manage Platform OS, for example

syslogd, and does not start getty, nor trap ctl-alt-del.
(3) The starting script kicks the following programs: the X window system display

server, four gateways, two VMs, and screen lock program.
(4) The shutdown process runs after both the VMs end.

The security policy of Platform OS is configured as shown in Figure 3. The init
process launches the xinit command, and the command starts the X window system
display server, VMs and gateways. Each VM accesses three files, log, configuration,

132 Y. Sameshima et al.

 …

Log File

wv_int_log_t

Configuration File

wv_int_conf_t

Virtual Disk File

wv_int_disk_t

X Display Server

wv_xserver_t

VM

wv_ext_t

VM

wv_int_t

POP Gateway

wv_pop_gw_t

init

init_t

xinit

wv_start_t

call

w/o

r/o

r/w

Fig. 3. Security Policy of Platform OS

and virtual disk image, and each of the files is assigned a different type of SELinux.
The access kind of each type is minimal, for example, wv_int_log_t, the type of log
file of Internal Workstation, is written only by wv_int_t, the domain of Internal
Workstation.

2.4 Gateways

The first request, data import from External Workstation to Internal Workstation
without virus infection, is realized by Clipboard Gateway, which works as follows:

(1) The clipboard watch agent on External Workstation transmits object on the
clipboard to the gateway when the user copies object.

(2) The gateway checks the object type, and transmits the object if the type is not file.
Otherwise the gateway does not transmit.

(3) The agent copies the object to the clipboard of Internal Workstation.

In order to realize part of the second requirement, e-mail retrieval from External
Network, the e-mail client on Internal Workstation accesses two POP servers on
Internal and External Networks, and the client accesses the later through POP
Gateway, which encapsulates attached files. The encapsulation and decapsulation
processes are shown in Figure 4.

POP gateway encrypts each attached file with a randomly generated AES key,
encrypts the random key with an encryption key of RSA, and signs the encrypted
random key and file with a signature key of RSA. When the user opens the attached
file received from External Network, it is sent to Display Gateway, the gateway
checks the signature with the verification key corresponding to the signature key,
forwards the encrypted key and file to the display agent on External Workstation, and
then the agent decrypts the file and displays it. The e-mail from Internal Network is
opened normally on Internal Workstation.

Attached Files from the Internet are opened in External Workstation and they are
accessed safely from Internal Workstation through Terminal Gateway. Actually the
gateway is a remote access client or terminal client running on a remote access server
or terminal server; as shown in Figure 5, combination of two remote accesses, one
from Internal Workstation to Terminal Gateway and the other from the gateway to
External Workstation, realized a remote access from Internal Workstation to External
Workstation.

 Windows Vault: Prevention of Virus Infection and Secret Leakage 133

 Text Message +

 Attached File

Internal Workstation External Workstation

Text Message +

Encrypted Attached File

Encrypted Attached File

Text Body

Text Body

POP

Gateway

Display

Gateway

POP ServerHeader

Attached File

Display Agent

Encrypted Key

Encrypted File

Signature

Encrypted Key

Encrypted File

Header

Attached File

Encryption Key, Signature Key

Verification

Key

Decryption Key

Encrypted Key

Encrypted File

Signature

Fig. 4. Encapsulation and Decapsulation of Attached File

Internal Workstation Terminal Gateway External Workstation

Platform OS

VM

Windows

Terminal Client

Terminal Server

Terminal Client

VM

Windows

Terminal Server

Fig. 5. Terminal Gateway as a Combination of Two Remote Accesses

Fig. 6. The same files opened in Internal Workstation (right) and External Workstation (left)

134 Y. Sameshima et al.

With use of Terminal and Display Gateways, the user can open an attached file of
e-mail from the Internet with the same operation of opening attached file from
Internal Network; the file is automatically displayed in the terminal client on Internal
Workstation, and it looks almost the same as file opened in Internal Workstation
locally as shown in Figure 6.

3 Performance Evaluation

The authors have implemented a prototype of Windows Vault and measured
performance in the environment shown in Table 1 with the benchmark program,
CrystalMark 2004R2 [11], and result is shown in Table 2. The column M is the result
of the mean score of Internal and External Workstations measured simultaneously, S
is one of Internal Workstation, and W is a normal Windows PC with Intel Core Solo
(1.66GHz).

Table 1. Environment

Item Description
Platform OS Cent OS release 5
VM VMware Workstation 5.5.2
Windows Windows XP Pro. + SP2
CPU Intel Core 2 Duo (2.16GHz)
Memory 2GB

Table 2. CrystalMark Results

Item M S W
Integer 8,361 8,383 3,901
Float 9,511 9,465 4,584
Memory 10,447 10,722 4,764
HD 11,457 11,985 4,485
GDI 1,979 2,205 1,426

Table 3. Performance of POP Gateway and Display Process

File Size (B) Msg. Size (B) N (sec) P (sec) P/N D (sec)
10K 15K 0.198 0.198 1.00 0.018

345K 467K 0.206 0.280 1.36 0.438
3,262K 4,406K 0.522 0.977 1.87 1.954

Comparing with the normal Windows, the performance of Internal Workstation
and External Workstation is better, and each of the workstations has shown enough
performance as a Windows PC.

The performance of retrieving e-mail and opening attached file is shown in
Table 3. The column N is the time without POP Gateway, and the column P is the
case through the gateway. The overhead is about 0-90%. The column D is the

 Windows Vault: Prevention of Virus Infection and Secret Leakage 135

transmission and decryption time of encrypted file through Display Gateway. There is
overhead of encryption and decryption, however, it is not so heavy to give impact on
usability.

4 Security Considerations

4.1 Attacks from External Workstation/Network to Internal Workstation

Internal Workstation is not directly connected to External Network, but there are four
routes of attack from External Network to Internal Workstation. The first route is via
e-mail; the e-mail client receives messages from External Network through POP
Gateway which encrypts attached files, and the files cannot be opened on Internal
Workstation. As a result, there is no possibility to infect virus via e-mail attached file.
Virus might be included in header or text body, so the gateway should check character
code and line length, and sanitize if they do not meet the protocol specification.

The second is via VM; External Workstation may be infected with virus which
attacks the base VM, and such virus may attack Internal Workstation. But the MAC
of Platform OS does not allow access between Internal and External Workstations,
and such attack cannot happen.

The third is via Clipboard Gateway. Normally user sees and selects an object, and
copies it to the clipboard, so the possibility of virus in clipboard object, which is not a
file, is considered to be low, but the object might contain virus code. In order to avoid
such possibility, the following object check functions of the gateway are useful:

(1) Plain text only: A clipboard object consists of type and data, and the gateway
checks the type and only text object is transmitted to Internal Workstation. The
size of text data and character code are also be checked.

(2) Strictly defined data: If the object data type is strictly defined, it is possible for the
gateway to check the clipboard object meets the definition and does not contain
virus.

The fourth route is via Terminal Gateway; basically the gateway transmits the
keyboard and mouse events from Internal Workstation to External Workstation and
graphical screen data from External Workstation to Internal Workstation, so virus
code cannot come into Internal Workstation. Normally a remote access protocol
supports clipboard sharing, however, Terminal Gateway kills the function, and virus
infection through Terminal Gateway does not happen.

4.2 Attacks by User

User may try to leak a secret file on Internal Workstation to External Workstation
through Display Gateway, but the file is not forwarded to External Workstation,
because the signature verification at the gateway fails. Consequently, there is no
secret leakage of file created on Internal Workstation to External Workstation or
Network through Display Gateway. The information flow of POP Gateway and
Clipboard Gateway is only from External Workstation to Internal Workstation,

136 Y. Sameshima et al.

therefore secret leakage does not happen. Terminal Gateway transmits display image,
mouse and keyboard events, and secret leakage from Internal Workstation to External
Workstation cannot happen except that a malicious user leaks secret text by typing
keyboard.

The user can change consoles of character terminals or X Window by typing ctl-
alt-function key, however, Platform OS is configured as no getty and screen lock
program is running on the X Window console, so the user can only access Internal
and External Workstations. As a result, normal office worker cannot access Platform
OS, nor change its configuration.

But the user who has knowledge of Linux management can access Platform OS by
trapping the boot process or direct access to hard disk. Possible solutions are change
of the init process program, physical lock of the PC hardware or use of the Trusted
Platform Module (TPM) [12]. The TPM is a chip on a PC motherboard and calculates
hash values of software components. On request from a remote challenger, the TPM
returns the hash value with signature generated within the chip. With this attestation
process, the remote challenger can authenticate PC hardware and verify software
integrity of Platform OS, and as a result, it is possible to detect physical attacks such
as replace of PC hardware, workstations and gateways. The TPM is also used as a key
storage; it is possible to encrypt the virtual disk images of the two workstations and
decrypt only on the specific PC hardware that has the TPM storing the decryption
key, and this countermeasure makes the attack of direct access to hard disk useless.

A few services, such as system logging, are running on Platform OS, and it might
be possible to attack such services. However, each service is given a domain and
separated from the other processes by the MAC, so Internal Workstation cannot be
attacked through a service even if there is vulnerability of the service.

4.3 Vulnerability of Gateways and Enhancements

If POP Gateway has vulnerability, attacker may get the control of the gateway and
can inject virus to Internal Workstation or steal secret from Internal Workstation. It is
the same as Clipboard and Display Gateways. The MAC of Platform OS cannot cover
the weakness of the three gateways, and the security quality of the gateways is very
important. However, it is possible to enhance the security by dividing function of each
gateway as follows:

Display Gateway has three functions; firstly it receives encrypted and signed file
from Internal Workstation, secondly verifies the signature and strips it, and finally
sends the file to External Workstation. The three functions can be realized by three
processes of different domains, receive process of r_display_t domain, verify process
of v_display_t domain, and send process of s_display_t domain. Data between
processes is passed via files of different types; the receive process receives file from
Internal Workstation and saves it of rv_display_t type, the verify process verifies and
strips the signature and saves data as file of vs_display_t type, and the send process
sends it to External Workstation. The permitted operations between the domains and
types are shown in Figure 7.

 Windows Vault: Prevention of Virus Infection and Secret Leakage 137

 write read write read

 only only only only

Security-

Enhanced

Display

Gateway

Receive Process

(r_display_t)

Encrypted File

+ Signature

Internal Workstation

Encrypted File

+ Signature

(rv_display_t)

Verify Process

(v_display_t)

Send Process

(s_display_t)

Encrypted File

(vs_display_t)

Encrypted File

External Workstation

Fig. 7. Domains and Types of Security-Enhanced Display Gateway

Comparing the original implementation of the gateway, the new gateway is more
secure, because of the following reasons:

(1) An attacker, which might be the user, must exploit the vulnerability through file,
which is enforced by the MAC, and the attack through file is more difficult than
one through TCP/IP communication channel, because the former is not interactive
and less measures of attack.

(2) The order of attack is fixed; first the reception process, next the verification
process, then the send process, and there is no other pass of attack, because the
other pass is prohibited by the MAC, and the attacker has less means to attack.

(3) Each process realizes one function and the code is simpler, so that it is more
secure than process supporting multiple functions.

(4) Even if an attacker succeeds to exploit all the processes, the information flow is
limited from Internal Workstation to External Workstation by the MAC, and there
is no chance virus infection of Internal Workstation.

The situation of Clipboard Gateway is very similar to Display Gateway. The
gateway has three functions; firstly it receives clipboard object from External
Workstation, secondly verifies the type object, and finally sends the object to Internal
Workstation. The security of the gateway can be enhanced in the same way of Display
Gateway.

Since the POP is an interactive protocol, the situation of POP Gateway is different
from the other two gateways, but the basic idea is the same; the first process receives
messages as a POP client, the next encrypts and signs the attached files, and the third
behaves as a POP server and sends the messages to Internal Workstation.

While the fail of security of the three gateways before the enhancements leads to
catalysis, the channel through Terminal Gateway is safe even if there is vulnerability
in the gateway. The gateway consists of two applications, terminal server and
terminal client which domains are different. As a result, if an attacker gets control of
one application, the attacker cannot get one of the other. Even if one application has

138 Y. Sameshima et al.

vulnerability and an attack code succeeds to transmit any type of data, the other
application transmits only graphical display data, keyboard and mouse events, so that
the security of the gateway is guaranteed.

4.4 Another Data Category: Unsafe Secret

Current Windows Vault processes two data categories, safe secret and unsafe non-
secret, but there is another category data, unsafe secret. Online banking is a typical
example; account number, password, balance sheet are secret, but the web page data
sent from the server may contain virus. Another typical example is e-mail message
sent from a business partner; an attached file contains business secret but the file
might be infected with virus.

The current Windows Vault processes such data as unsafe non-secret, because it
comes from External Network, and there is a risk that such secret data is stolen from
External Workstation. A solution is the third type workstation, which can access only
trusted web sites through encrypted and authenticated channel over the Internet. An
attached file of e-mail is transmitted through Display Gateway and opened on this
workstation; even if the workstation is infected with virus, secret cannot be leaked out
to the Internet, because the workstation is connected only the trusted web sites.

5 Usability of Network Applications

In the following, usability of sending e-mail and web browsing is described.

5.1 Sending Message to External Network

In the current implementation, user can receive e-mail message from External
Network with e-mail client on Internal Workstation, but cannot reply to the message,
because Internal Workstation cannot access External Network, and this leads to
inconvenience. It is also true that the user cannot send a new message from Internal
Workstation to External Network. As far as user sends from Internal Workstation to
External Network, the only solution is encryption; all messages from internal to
trusted external recipient are encrypted by the fifth gateway, SMTP gateway, which is
connected to the Virtual Internal Network and External Network, and encrypts all
received e-mail from Internal Workstation.

A solution to reply to message from External Network is to add the original whole
message as an attached file to the message; POP gateway encrypts and signs the
whole message, and then adds it as the last attached file. When user wants to reply to
the message, the user selects the last attached file to open, and then the file is sent to
External Workstation through Display Gateway, an e-mail client opens the file and
displays the original message, and then the user replies with normal operation through
Terminal Gateway.

As for a new message to External Network, the user needs to send it with the e-
mail client on External Network. However, by sending carbon copy to the user own
account on Internal Workstation, the user can access the new message on Internal
Workstation.

 Windows Vault: Prevention of Virus Infection and Secret Leakage 139

5.2 Web Browsing

With click of links, user can brows web pages without conscious of the page location.
Windows Vault divides OS and network into internal and external, so the user needs
to conscious of which network the accessing site belongs to, and changes browsers on
Internal and External Workstations. This is big change of usage of web browser.

In order to realize ‘smooth browsing from internal to external,’ it is better that with
click of link to external page on internal page, the external page is displayed on
Internal Workstation. This function can be realized with HTTP Gateway which calls
web browser on External Workstation. The gateway is connected to the virtual
External Network and Internal Network, and behaves as follows:

(1) The web browser on Internal Workstation accesses the gateway according to the
proxy configuration of the browser.

(2) The gateway returns an error page to the browser, and sends the requested URL to
the HTTP agent on External Workstation.

(3) The agent directs browser on External Workstation to access the URL.
(4) The browser accesses the page of the URL, displays the external page, and user

can access the page from Internal Workstation through Terminal Gateway.

With the gateway, the user can smoothly brows from a page on Internal Network to
a page on External Network in the same as the current operation. The reverse
direction browsing is also possible, but it needs to sanitize the URL in external page,
since virus may be contained it the URL.

6 Related Works

NetTop also consists of Trusted Linux and VMs, and Windows’ on VMs exchange
data via ‘Regrade Server’ with explicit user authorization [10]. The user of NetTop is
enforced to use two Windows OSes, two mail clients, two documentation tools, etc.,
and this is a burden for office workers of commercial companies. On the other hand,
the user of Windows Vault accesses only Internal Workstation basically; the user can
receive and read text body of e-mail from the Internet, open and read attached files
with the same operation as the normal Windows. It is also true that the user can access
web pages on the Internet from Internal Workstation through HTTP and Terminal
Gateways. This is convenient for users who do not aware of multi-category security.

The Trusted Virtual Domains framework [13] is a kind of system isolation based
on Trusted Platform Module [12]. The goal of the framework is to establish secure
communication channels between software components with the integrity assurance
of the other components. The framework also utilizes multiple VMs and software
components of different domains running on a hardware platform. There is a secure
communication channel between the software components of the same domain, but no
communication between those of different domains. However, Windows Vault is
focusing the air gap between the different domains or workstations, and has
established secure user data exchange between the two workstations.

VIRTUS [14] is a new processor virtualization architecture for security-oriented
next-generation mobile terminals. It creates OS instances, called domains, for

140 Y. Sameshima et al.

pre-installed applications and downloaded native applications. VIRTUS supports
inter-domain communications, but it does not clearly specify its security. On the other
hand, in Windows Vault the communication between Internal Workstation and
External Workstation/External Network is designed carefully not to cause virus
infection nor secret leakage.

7 Conclusions

The authors have described Windows Vault, which consists of two Windows
workstations, one for safe secret and the other for unsafe non-secret. The two
workstations are integrated into a single PC with use of VM and secure OS, and
connected securely by gateways. These gateways transmit data between the two
workstations without virus infection of Internal Workstation or secret leakage from
Internal Workstation to External Workstation. Comparing with the existing data
isolation system, the proposed system realizes the same security without change of
current user operations of e-mail or awareness of multi-category security of
intelligence community.

References

1. Gordon, L.A., Loeb, M.P., Lucyshyn, W., Richardson, R.: 2006 CSI/FBI Computer Crime
and Security Survey: Computer Security Institute (2006)

2. Symantec Reports Rise in Data Theft, Data Leakage, and Targeted Attacks Leading to
Hackers’ Financial Gain: News Release (19th March 2007), http://www.symantec.com/
about/news/release/article.jsp?prid=20070319_01

3. McAfee, Inc. Releases New Research Suggesting Data Loss Will Lead To Next Major
Corporate Collapse: Press Release (24th April 2007), http://www.symantec.com/
about/news/release/article.jsp?prid=20070319_01

4. Frantzen, S.: Targeted attack: Experience from the trenches: The SANS Institute (May 21,
2006) http://isc.sans.org/diary.html?storyid=1345

5. Argus Systems Group, Inc.: PitBull.comPack, OS-level Security for Solaris and AIX:
White Paper (March 2001), http://www.argus-systems.com/public/docs/pitbull. white
paper.oss.pdf

6. Loscocco, P.A., Smalley, S.D.: Meeting Critical Security Objectives with Security-
Enhanced Linux. In: Proceedings of the 2001 Ottawa Linux Symposium (2001),
http://www.nsa.gov/selinux/papers/ottawa01.pdf

7. Trusted Computer System Evaluation Criteria; Department of Defense Standard 5200.28-
STD (August 1983)

8. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.E.: Semantics-Aware Malware
Detection. In: IEEE Symposium on Security and Privacy (2005)

9. HP NetTop: A Technical Overview (December 2004)
10. Meushaw, R., Simard, D.: Nettop, Commercial Technology in High Assurance

Applications: NSA Tech Trend Notes (Fall 2000), http://www.vmware. com/pdf/
TechTrendNotes.pdf

11. Crystal Dew World, http://crystalmark.info/?lang=en

 Windows Vault: Prevention of Virus Infection and Secret Leakage 141

12. Trusted Computing Group, TCG Specification Architecture Overview, Specification
Revision 1.4 (August 2, 2007)

13. Griffin, J.L., Jaeger, T., Perez, R., Sailer, R., van Doorn, L., Caceres, R.: Trusted Virtual
Domains: Toward Secure Distributed Services. In: The First Workshop on Hot Topics in
System Dependability (June 30, 2005)

14. Inoue, H., Ikeno, A., Kondo, M., Sakai, J., Edahiro, M.: VIRTUS: A new processor
virtualization architecture for security-oriented next-generation mobile terminals. In:
Proceedings of the 43rd annual conference on Design automation, pp. 484–489 (2006)

An Architecture Providing Virtualization-Based

Protection Mechanisms Against Insider Attacks

Frederic Stumpf�, Patrick Röder��, and Claudia Eckert

Department of Computer Science,
Technische Universität Darmstadt,

Darmstadt, Germany
{stumpf,roeder,eckert}@sec.informatik.tu-darmstadt.de

Abstract. Insider attacks are very powerful and are relevant in many
scenarios, such as grid computing, corporate computing on home com-
puters and electronic commerce of digital content. We present an example
scenario to illustrate these attacks and perform a threat analysis to ex-
tract requirements for preventing insider attacks. We believe that these
requirements are also representative of other scenarios. We develop a four
layered protection architecture by using virtualization techniques based
on these requirements. Therefore, the proposed architecture prevents in-
sider attacks in scenarios with similar requirements as well.

1 Introduction

Insider attacks are relevant in scenarios where confidential data or intellectual
property is processed, e.g., grid computing, corporate computing on home com-
puters and electronic commerce of digital content. These attacks are more dan-
gerous than outsider attacks, since the inside attacker can use his legitimate
permissions to perform an attack, e.g., to steal data. An FBI/CSI survey [1]
states that a substantial portion of losses is attributed to inside attackers, which
shows that these attacks are important and must be considered.

Depending on the scenario, the corresponding attacks differ in the attacker’s
options to perform an attack. For example, a private user who is trying to by-
pass a digital rights management (DRM) protection mechanism has unlimited
access to his computer. In contrast to this, office employees often do not have
administrative access to their computers. The common problem of these attacks
is that the attacker can modify his local system configuration to deactivate or
bypass protection mechanisms.

As a result, each scenario requires different protection mechanisms. These
mechanisms should be effective, but should not limit usability, e.g., mechanisms
for multi-purpose computers should maintain the flexibility of these comput-
ers. Therefore, we develop a flexible protection architecture for general purpose
� The author is supported by the Germand Research Foundation (DFG) under grant

EC 163/4-1, project TrustCaps.
�� The author is supported by the PhD program Enabling Technologies for Electronic

Commerce of the German Research Foundation (DFG).

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 142–156, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Architecture Providing Virtualization-Based Protection Mechanisms 143

computers, which maintains the universal character of these computers. We in-
troduce protection mechanisms which prevent software components on different
trust levels from being able to influence each other. This gives us the ability
to run additional software on the machine besides the software that requires
protection.

We use the scenario of handling confidential documents in a business envi-
ronment to perform a threat analysis. Next, we extract requirements for our
protection architecture from this analysis. A central challenge is to detect when
the attacker has modified his local system configuration. For this purpose, we
use the concepts of the Trusted Computing Group (TCG) and virtualization
techniques.

The remainder of this paper is organized as follows: We provide background
information on the TCG concepts and virtualization techniques in Section 2.
Section 3 explains our scenario. We perform a threat analysis for this scenario
in Section 4. We extract requirements for the protection architecture which we
present in Section 5. After that, we evaluate these mechanisms by discussing
whether they prevent the attacks described before in Section 6. Section 7 dis-
cusses related work. Finally, we conclude and discuss future work in Section 8.

2 Background

In this section, we present background information on trusted computing and
virtualization techniques, which are important for understanding our approach.

2.1 Trusted Computing

The core of the TCG mechanisms [2] is the Trusted Platform Module (TPM),
which is basically a smart card soldered to the mainboard of a PC. The TPM
serves as the root of trust. Tampering with the TPM is generally difficult, since
it is implemented in hardware and uses non-migratable keys for certain cryp-
tographic functions. Therefore, we assume that the TPM is trustworthy. One
must also assume that the hardware vendor is trustworthy, and has designed the
TPM chip according to the specifications. Although the TPM chip is not spec-
ified to be tamper-resistant, it is tamper-evident, meaning that unauthorized
manipulations will at least be detected.

In this paper, the Platform Configuration Registers (PCRs) are of particu-
lar interest. These registers are initialized on startup and then used to store
the software integrity values. The TPM calculates the hash value of software
components before they are executed and writes this software integrity value to
a specific PCR by combining the current result with the previous value of the
PCR. The following cryptographic function is used to calculate the values for
the specific registers:

Extend(PCRN , value) =SHA1 (PCRN ||value)

SHA1 refers to the cryptographic hash function used by the TPM, while the ||
operation represents a concatenation of byte arrays. The trust-anchor for a so

144 F. Stumpf, P. Röder, and C. Eckert

called trust-chain is the Core Root of Trust Measurement (CRTM) , which resides
in the BIOS and is first executed when a platform is powered up. The CRTM
then measures itself and the BIOS, and hands over control to the next software
component in the trust-chain.

For each measured component, an event is created and stored in the stored
measurement log (SML). The PCR values and SML are used to attest the plat-
form’s state to a remote party. In order to guarantee the authenticity of these
values, they are signed with a non-migratable TPM signing key, namely the
Attestation Identity Key (AIK). A remote platform can compare those signed
values with reference values to check whether the platform is in a trustworthy
state or not.

2.2 Virtualization

Virtualization allows the execution of several different virtual machines, with
different operating systems, on a single host entity by the introduction of a
hypervisor, also known as a virtual machine monitor (VMM) [3]. This hypervisor
provides an abstract interface to the hardware and partitions the underlying
hardware resources. The underlying resources are then available to the virtual
machines through the VMM which maintains full control of the resource given
to the VM. The main contribution of this technology is the provision of strong
isolation between different virtual machines, established by the virtual machine
monitor.

3 Example Scenario

In this section, we present the example scenario of handling confidential docu-
ments in a business environment. We use a client server based document pro-
cessing architecture (DPA) as an example. This architecture enables the user to
view and edit documents, while enforcing access control policies, which are de-
fined by corresponding rules. We perform a threat analysis for this architecture
in the next section. The DPA is depicted in Figure 1 and uses three databases.
The document database (Doc DB) contains all documents of the system. The
rule database (Rule DB) contains the access control rules, which specify allowed
or denied accesses to the documents and their parts. Finally, the user database
(User DB) stores the credentials of the users of the system, as well as the corre-
sponding roles, including their hierarchy.

The document editor (DE) presents documents to the user and offers oper-
ations that can be performed on the documents. If the user invokes such an
operation, the corresponding request is sent to the document processor (DP),
which runs on the server and performs the requested operation if it is permit-
ted. Inside the DP, the policy enforcement point (PEP) intercepts each opera-
tion and asks the policy decision point (PDP) whether the requested operation
is allowed. The PDP uses the three databases to decide whether to allow or
deny the requested operation. We believe that this scenario is a representative

An Architecture Providing Virtualization-Based Protection Mechanisms 145

DE

PDP

User
DP

PEP

Client Server

Rule DB

Doc DB

User DB

Fig. 1. Document processing architecture (DPA)

example for evaluating insider attacks in scenarios where all documents reside
on the server. Moreover, the scenario has similarities with scenarios for DRM
or corporate computing on home computers. The common requirement of these
scenarios is that the corresponding architectures depend on the trustworthiness
of the client configuration. In addition to this, these architectures must ensure
that data is not extracted from the protected system on the client side.

4 Threat Analysis

In this section, we evaluate possible attacks on the components of the DPA
mentioned above. We describe two different types of attackers, namely the inside
attacker and the outside attacker.

Inside Attacker: An inside attacker is a legitimate user of the system who mis-
uses his permissions to perform an attack. We assume that an inside attacker
also has physical access to the client machine, which enables additional at-
tacks. In addition to this, an inside attacker can perform remote attacks
on the document processor. In a case, where the system is used within a
company, an inside attacker is typically an employee of the company.

Outside Attacker: An outside attacker is a user who does not have legitimate
access to the system, which means that he has no credentials to login to
the server and also has no physical access to any machine of the system.
The outside attacker can only perform remote attacks on the client and the
document processor. For example, if our system is used within a company an
outside attacker might be either a professional hacker hired by a competitor,
a government spy performing industry espionage or a hacker who tries to
perform attacks just for his own entertainment.

All together, an inside attacker can perform much more powerful attacks than
an outside attacker. Since the attacks of an outside attacker are a subset of the
attacks of an inside attacker, we focus on attacks by inside attackers. With this
approach, we also prevent the attacks of an outside attacker. We assume the
server to be trustworthy. Accordingly, we only examine attacks on the client.

146 F. Stumpf, P. Röder, and C. Eckert

4.1 Attacks on the Client

In this section, we describe possible attacks in the scenario mentioned above.
We focus on attacks that compromise the confidentiality of the protected data.

Software Manipulations. In the following, we discuss software manipulations
on the client, which can be performed on different components of the system.

Extract data from the document editor. An inside attacker can try to extract
confidential information from the document editor. As a result, the document
editor must be designed in a way, that it is not possible to extract confidential
data from it and transfer it to another application, e.g., an e-mail client.

Manipulate the document editor. If the document editor prevents the extrac-
tion of confidential data, the attacker can try to manipulate the corresponding
protection mechanisms. Alternatively, the attacker could use another document
editor that is compatible with the protocols used in the DPA, but allows data
to be extracted. Therefore, we must have a mechanism to ensure that the doc-
ument editor is not modified and that it is the version that has been deployed
originally.

Use the operating system mechanisms to extract data. The attacker could also use
the underlying operating system on which the document editor runs to extract
data. One such method is to extract the confidential data from the memory
by writing the memory used by the document editor to a file, which is also
referred to as a memory dump. An attack like this requires that the application
of the attacker runs in kernel mode, which enables access to the entire physical
memory of the machine. There are many other similar methods, which all have in
common that they use the services offered by the underlying operating system.
Consequently, we must configure the underlying operating system in a way that
prevents the use of services like memory dumps to extract the confidential data
from the document editor.

Manipulate operating system. If the underlying operating system is configured
in a way that prevents the extraction of confidential data using its services, the
attacker could modify the operating system or its configuration. The attacker
could try to re-enable the mechanisms that we have disabled before. For example,
he could exchange a system module, e.g., the module that performs memory
management or the module that displays data on the screen. Another similar
approach is to replace the entire operating system with a system that allows
the extraction of data. As a result, we need a mechanism to ensure that the
operating system is neither manipulated nor entirely replaced. This mechanism
must ensure that the operating system is authentic, which means that it is the
one that has been deployed and it is configured as we have defined.

Extract confidential data from the swap file. The DPA does not store documents
permanently on the client. Instead, the DPA keeps them in the memory to display
and edit them, which avoids attacks based on accessing the hard drive of a client
machine. Nevertheless, we must also ensure that the operating system does not

An Architecture Providing Virtualization-Based Protection Mechanisms 147

swap the memory used by the document editor to the hard disk, if available
memory is getting low. This again must be done by configuring the operating
system. As a consequence, there is no risk of losing confidential data by stealing
a hard drive of an authorized client.

Masquerading Attacks. In the following, we discuss different types of mas-
querading attacks on the DPA. We describe the cloning of a client machine and
the spoofing of the server of the DPA.

Clone a client machine. Another type of attack is to clone an authorized client
machine by creating an exact copy of the configuration of an authentic machine,
e.g., by creating an exact copy of the hard disk of the authentic client or by
copying the authentication credentials to another client. For example, a legit-
imate user could set up such a cloned client machine in an area which is not
under surveillance to extract data by taking pictures of the displayed data. To
reduce the risk of this type of attack, we need a mechanisms that prevents the
cloning of a client machine. This mechanism must ensure that the identity of
the client machine is bound to the hardware of the machine.

Masquerade the server. The attacker can also masquerade the server, e.g., by
redirecting the network traffic using a DNS poisoning attack. Therefore, we need
mutual authentication between client and server. In our scenario, the masquerad-
ing of a server is less dangerous, since no confidential documents are uploaded to
the server. However, this can be the case in the scenario of corporate computing
on home computers.

Hardware Attacks and Analogue Attacks In the following, we discuss
attacks on the hardware and analogue attacks. We consider DMA attacks as
hardware attacks and discuss them in this section, too.

Use DMA to extract data. Another type of attack is to use a device with DMA to
extract confidential data. DMA bypasses any protection managed by the CPU
and allows to access the entire memory.

Extract data using probing attacks. Moreover, the attacker can perform probing
attacks, such as mechanical or electrical probing attacks, on the hardware com-
ponents of the DPA. Using this attack, he can extract confidential data directly
from the hardware, e.g., from the TPM or from a memory module.

Use analogue channels to extract data. Besides the attacks mentioned above, the
attacker can take an analogous screen shot of the display using a camera.

4.2 Requirements for the Protection Architecture

In this section, we present the requirements for the protection architecture. The
first two requirements apply to any scenario, whereas the requirements that
follow are specific for the DPA.

Requirement 1: The operating system is configured to support only the min-
imum set of services and resources. As we have discussed so far, some of the

148 F. Stumpf, P. Röder, and C. Eckert

mechanisms for securing the client must be performed by configuring the op-
erating system, e.g., configuring it to not swap the memory occupied by the
document editor or disabling the possibility to take digital screen shots. More-
over, we must configure the operating system to allow only network connections
to the document processor, which reduces the risk that data is sent to an unau-
thorized third party.

Requirement 2: The number of software components of the operating system
is minimal. To reduce the risk of vulnerabilities, it is highly desirable to employ
a small operating system that has the minimal set of functions that are required
to execute the document editor, because the chance of vulnerabilities increases
with the complexity of a system. Consequently, we must use a operating system
with the minimal number of user space software and kernel components, e.g.,
device drivers.

Requirement 3: Attestation of the client machine. Moreover, we need to en-
sure that the operating system that we have supplied is neither exchanged with
another operating system nor is its configuration manipulated to disable the
security mechanisms of the protection architecture.

Requirement 4: Authenticity of client and server. The user of the client plat-
form could manipulate his machine to forward an attestation request to another
machine with authentic software. Therefore we must ensure that the provided
configuration values refer to the attested system and that the authenticity of
both client and server is guaranteed.

Requirement 5: Completeness of attestation. The definition of this state de-
pends on what is measured on the client side. The usual approach [4] is to
calculate the hash value of every executed binary and include it in the state
definition. As a result, the verifier receives a list of all binaries that have been
executed since the last reboot of the machine. However, this approach has two
problems. First, the received list of executed binaries gives no hint about what
was executed after the remote attestation. For example, a key logger or trojan
horse can be started after the remote attestation. Although the malware was
located on the client machine at the time of the remote attestation, it was not
detected, because it was executed after the remote attestation. The second prob-
lem is, that using this approach, only the executable binaries of applications are
inspected. Shell scripts and configuration files are not included in the measure-
ment. This leads to the problem, that certain manipulations, e.g., manipulations
of the configuration files, can not be detected by this approach. Consequently,
we need an approach that measures the complete system configuration including
scripts and configuration files.

5 Protection Architecture

As discussed before, we must ensure that the client machine can execute ad-
ditional software, e.g., a web browser or an e-mail client, after the security

An Architecture Providing Virtualization-Based Protection Mechanisms 149

mechanisms are applied. This can be a problem when requirements 1 and 2 are
fulfilled, since they reduce the compatibility of the client machine with additional
software. For this reason, it is desirable to have a different operating system for
different applications. As a consequence, we need a method to run different
operating systems on one client machine, which we achieve by using virtual-
ization techniques and running different virtual machines on a client machine.
Each operating system can be executed in a separate virtual machine. Concern-
ing the security of the system, we must ensure that these virtual machines can
not influence each other. For example, we must ensure that malware running
in one virtual machine can not extract confidential data from another virtual
machine. We apply our approach for providing different virtual machines [5] and
analyze whether the attacks described in Section 4.1 can be solved with this
approach. The strong isolation achieved through virtualization guarantees that
different virtual machines can not influence each other. Our previous approach
uses virtualization in combination with the mechanisms defined by the Trusted
Computing Group. It establishes several different execution environments by
using various types of virtual machines, which are strongly isolated from each
other. It also provides an abstraction of the underlying hardware TPM through
a virtualized TPM (vTPM) interface. This allows the different virtual machines
to use the measurement and reporting facilities of the TPM, thus they benefit
from a hardware-based trust anchor. This approach has the advantage over the
others [6] that the binding between TPM and vTPM is already specified, which
is useful for remote attestation of virtual machines.

We use this approach to execute the document editor in one such isolated
virtual machine. Other applications are executed in a different virtual machine.
Thus, they can not interfere with the document editor. Figure 2 depicts the
approach applied to the DPA.

Hypervisor

TPM
Hardware

Management
VM

Open VM Trusted VM

vTPM

Document
Editor

Protection Layer 4

Protection Layer 3

Protection Layer 2

Protection Layer 1

Fig. 2. Protection architecture organized in layers

The resulting protection architecture consists of components divided into four
protection layers, in which components located on one layer provide security
mechanisms to protect the components located on the layer directly above. In
the case of a successful attack on one layer, the layers below can prevent the
attacker from successfully transferring data to another physical machine.

150 F. Stumpf, P. Röder, and C. Eckert

These components include three virtual machines, namely the open virtual
machine, a management virtual machine and the trusted virtual machine (TVM).
Additionally, a hypervisor partitions the underlying hardware and a TPM serves
as a hardware-based trust anchor. The TPM provides hardware-based tamper-
evident cryptographic functions to protect the software components running
on the layer directly above from unauthorized manipulations. Together with
remaining hardware components, the TPM forms the lowest protection layer,
more specifically, protection layer 4.

5.1 Protection Layer 4: TPM and Hardware

The TPM is the anchor of trust and the basis for the attestation. We store
several non-migratable client-specific keys in the TPM, which are used for the
challenge-response authentication with the server. This prevents the cloning of a
client machine and additional attacks on the authenticity of the client machine.
The attacker must perform a local physical attack, e.g., a mechanical or electri-
cal probing attack, to the TPM to extract these keys. Since the TPM is specified
to be tamper-evident, these attacks are not prevented, but can be detected af-
terwards. We assume that the hardware and the TPM behave as specified.

5.2 Protection Layer 3: Hypervisor and Management VM

The hypervisor is the first part of protection layer 3 and provides an abstraction
layer to the underlying hardware. It has privileged access to the hardware and
can grant and revoke resources, e.g., CPU cycles, to and from the running VMs.
This hypervisor provides strong isolation of the virtual machines, which is the
protection mechanism of this layer. It ensures that different virtual machines
can not influence each other, e.g., by reading each others memory. In this ap-
proach, every virtual machine uses individual virtualized device drivers, which
are executed within that VM. The hypervisor ensures, that these device drivers
can only access the memory of the corresponding virtual machine. When run-
ning applications of different trust levels on a machine without virtualization,
an attacker could use a malicious device driver to gain system wide access, e.g.,
to read the memory of the document editor and extract the confidential docu-
ments. We assume that the hypervisor and the management VM are set up by
a trustworthy system administrator and that the user of the machine is not able
to change this configuration.

Because of its privileged position, the hypervisor needs to be trustworthy, since
it can manipulate the CPU instructions of every virtual machine. We assume
that the hypervisor is trustworthy and therefore guarantees strong isolation. Cur-
rently available virtualization solutions provide strong isolation. However, this
still can be circumvented with direct memory access (DMA) operations [7]. These
operations access the memory without intervention by the CPU and therefore
bypass the hypervisor’s protection mechanisms. Hypervisors with secure sharing
[8] prevent these attacks, but suffer from a high performance overhead, as well
as a large trusted computing base, since the required I/O emulation is moved
into the hypervisor layer.

An Architecture Providing Virtualization-Based Protection Mechanisms 151

The management virtual machine is the second part of protection layer 3. It
is responsible for starting, stopping and configuring the virtual machines. It is
part of this protection layer, since it is closely connected to the hypervisor and
is a privileged VM, which has direct access to the hardware TPM.

5.3 Protection Layer 2: Open VM and Trusted VM

This protection layer consists of the open VM and the trusted VM. The open
VM is allowed to run arbitrary software components. It runs applications with
a lower trust level, such as web browsers or office applications. The open VM
provides the semantics of today’s open machines and therefore has no additional
protection mechanisms for upper layers. Since this virtual machine is not of
interest for our approach, we will not focus on it in the rest of our work.

The TVM runs the document editor and a tiny OS with a minimal number of
software components, to reduce the possible number of security vulnerabilities.
This fulfills requirements 1 and 2 without losing the ability to run other software
on the client machine. The tiny OS and the document editor are part of a virtual
appliance (VA), which is a fully pre-installed and pre-configured set of software
for virtual machines. To ensure that the VA is not manipulated, the management
VM measures its integrity before startup.

The TVM runs in protection layer 2 and provides a virtual TPM (vTPM)
as an additional protection mechanism. The operating system of the TVM uses
this vTPM to protect the document editor running in protection layer 1. We
use this vTPM to perform a complete attestation of the entire hard disk of
the TVM, to ensure that neither the operating system, its configuration, nor
the document editor running on top of the operating system is manipulated.
As a result, the verification of the state of the entire virtual machine requires
only one reference value. This eliminates the need to maintain a large amount
of reference values, which is the main disadvantage of the binary attestation.
Moreover, the server checks in the attestation whether the protection layers
below the operating system, e.g., the hypervisor, are trustworthy. As a result,
this mechanism fulfills Requirement 5. In addition to that, we use the vTPM
to establish an authenticated channel between client and server. We discuss the
corresponding protocol in Section 5.5.

The TVM only accepts network requests from the server to reduce the chance
of network attacks. After the booting process, which can not be interrupted,
the operating system of the TVM directly executes the document editor. As a
consequence, the only option for a user to interact with the TVM is to use the
document editor provided by us. This improves the security of the TVM, since
it limits the number of possible attacks.

All I/O interfaces which can be used to extract data from the system are
either blocked or controlled. For example, the management VM ensures that
the hard disk is read only, which prevents an attacker from temporarily stor-
ing confidential data on this disk to extract it afterwards by booting a different
operating system. Additionally, the management VM has a configuration file
for the TVM, which defines that network connections are only allowed to the

152 F. Stumpf, P. Röder, and C. Eckert

server of the DPA, which inhibits an attacker from sending confidential data
to a different host. As a consequence, even if an attacker exploits a vulnerabil-
ity of the document editor, he can not transfer the confidential data out of the
TVM.

5.4 Protection Layer 1: Document Editor

This protection layer consists of the document editor. The document editor is
written in Java, which is expected to minimize the risk of buffer overflows. In
addition to this, the document editor can edit confidential documents in memory
and does not need to write them to disk. The server’s authenticity is checked by
verifying the server’s certificate before answering an attestation request.

5.5 Attestation Protocol

To prevent masquerading attacks on the authenticity of the platform configura-
tion, we use an enhanced remote attestation protocol [9]. These attacks forward
the integrity measurements of a conform host to masquerade a conform client
state. The enhanced protocol adds a key establishment phase, to ensure that
the channel of attestation is authentic. It also guarantees an end-to-end com-
munication and prevents the attestation channel from becoming compromised
by another application which could take over the attestation channel after the
attestation has succeeded.

The simplified process of our remote attestation protocol is illustrated in
Figure 3. It consists of an initialization phase and an attestation phase. The
initialization phase yields a vAIK credential which is then used in attestation
phase to sign the PCRs. This vAIK credential is signed by an AIK from the hard-
ware TPM. In the first step of the initialization phase, the vTPM is initialized,

Fig. 3. Simplified attestation process

An Architecture Providing Virtualization-Based Protection Mechanisms 153

which in turn requests a new vAIK credential from the hardware TPM (steps 2
and 3). The hardware TPM issues a vAIK credential and sends it to the vTPM
(steps 5 and 6). The attestation phase is triggered by the document processor,
which sends an attestation request consisting of a nonce and its public Diffie-
Hellman key pair ga mod m for the key-establishment to the document editor
(step 7). The document editor generates the corresponding Diffie-Hellman key
pair gb mod m and sends this, together with the nonce, to the vTPM (step 8).
The vTPM generates a digital signature using the vAIK (step 9) and transfers
it together with the vAIK credential, to the document editor (step 10). The doc-
ument editor forwards this data to the DP (step 11). Next, the DP verifies the
authenticity of the document editor and its platform by inspecting the platform
configuration registers (step 12). Finally, both the DP and the document editor
calculate the shared session key for the following communication (step 13, not
illustrated).

The protocol for performing remote attestations guarantees that the endpoint
of the communication is within the attested virtual machine. Therefore, relay
or masquerading attacks are not possible. The combination of attestation and
key establishment fulfills Requirement 4, since it prevents the masquerading of
a trustworthy system configuration.

6 Evaluation of the Protection Architecture

In the following section, we evaluate whether the security mechanisms described
in Section 5 prevent the attacks mentioned in Section 4.1.

Software Manipulations. Each of the protection layers can be either manip-
ulated during runtime or before it is executed. Runtime attacks are especially
critical, since they are not detected by the current method of integrity measure-
ment, which only measures components when they are executed. The underlying
protection layer must be manipulated to modify the current layer, because the
integrity of each layer is measured before execution by the layer below. This re-
sults in a chain of trust, with the TPM as a hardware anchor. As a consequence,
the manipulation of any layer either requires a runtime attack or a hardware
attack on the TPM. In the following, we discuss possible runtime attacks on
each layer. The document editor is robust against buffer overflow attacks, since
it is written in Java, which is commonly believed to decrease the possibility of
buffer overflows. On the downside, other attacks, such as exploiting other pro-
gramming errors, are still possible. The risk of runtime attacks on the operating
system is reduced, because software with lower complexity is expected to have
less errors than software with higher complexity. Moreover, we choose a strict
system configuration to minimize possible attack methods, e.g., network connec-
tions are restricted to the server, the hard disk of the TVM is read-only and
swapping is disabled. As a consequence, in the case of a successful attack on
the operating system, the attacker has no options to transfer confidential data
to another machine. This is an example of a lower layer preventing a successful

154 F. Stumpf, P. Röder, and C. Eckert

attack, when the protection mechanisms of the layer above failed. Runtime at-
tacks on the hypervisor are difficult, since it has a lower complexity compared
to operating systems and it does not expose interfaces to the user which could
be used for an attack. Moving protection mechanisms of upper layers into this
layer, simplifies the verification of the correctness of these mechanisms.

Masquerading attacks. Both client and server can be masqueraded, where
the cloning of a machine is a special type of this attack. Since we assume that the
server is trustworthy, we only focus on cloning attacks on the client. An attacker
can create an exact copy of a client’s hard drive, but he can not copy the content
of the corresponding TPM. The attacker can not use this cloned client to access
the server, since our attestation protocol uses secrets stored in the TPM and
therefore detects that the client is not authentic. One such secret is the AIK of
the hardware TPM, which is used to sign the vAIK of the vTPM. This vAIK in
turn, is used in the attestation protocol. The server can check the authenticity
of the vAIK with the corresponding AIK credential that was installed on the
server when the system was set up. Using an honest system to masquerade a
trustworthy system state is prevented by our attestation protocol. This protocol
also detects and prevents masquerading of a server, since the server’s certificate
is checked by the document editor.

Hardware attacks and analogue attacks. DMA attacks can either be han-
dled entirely in software by emulating all I/O devices, which causes a high per-
formance degradation. Alternatively, DMA attacks can be prevented by using
hardware support, e.g., Intel’s Trusted Execution Technology. As a consequence,
it depends on the implementation of our protection architecture whether or not
DMA attacks are possible. Probing attacks are difficult to inhibit. At least the
TPM is specified to be tamper-evident, which allows an attack to be detected
afterwards. Analogue attacks are difficult to prevent with software mechanisms.
Fortunately, the bandwidth of this channel is much lower compared to digitally
copying confidential data. In addition to that, this attack method has a higher
risk of being detected, if the machine is located at a monitored location, e.g., an
office with many co-workers or an office that is under surveillance by security
cameras. We do not provide a mechanism to prevent this type of attack.

7 Related Work

Terra [10] is an approach to create a virtual machine-based platform, which
allows the attestation of virtual machines. It uses VMWare’s ESX Server to
establish two types of virtual machines (Closed Box and Open Box) and to
report the state of a closed box machine to a remote entity. We could also use
Terra’s Closed Box for our scenario and perform the analysis of the protection
mechanisms based on Terra. However, Terra suffers from using a large trusted
computing base, which is a potential security threat, since the trusted computing
base could be exploited to undermine the protection mechanisms.

An Architecture Providing Virtualization-Based Protection Mechanisms 155

A similar approach that enables attestation is used in the Integrity Measure-
ment Architecture (IMA) [4]. The authors present a comprehensive prototype
based on trusted computing technologies, where integrity measurement is imple-
mented by examining the hashes of all executed binaries. However, the prototype
is not based on virtualization technologies, and therefore no strong isolation be-
tween processes is achieved. This requires to transfer a complete SML to the
remote entity, which in turn, needs to validate all started processes to determine
the platform’s trustworthiness.

Similar to our proposed protection architecture a number of additional proj-
ects, such as EMSCB [6] and Open-TC exist that also use virtualization to
establish a trustworthy computing platform. These projects are either based on
the L4 microkernel [11] or on the Xen hypervisor. In this context, Sadeghi et al.
have presented a prototype for DRM [12] that uses the L4 and provides secure
storage and attestation of compartments. Our concepts and how the different
protection layers interact with each other to prevent insider attacks could also
be analyzed based on these alternative approaches. However, these approaches
do not use a virtual TPM, therefore their protection mechanisms differ from the
ones presented in this paper.

Our concept of the DPA is very similar to server-based computing, where all
documents remain on the server and are accessed by executing the corresponding
applications on the server. Only the display content of these applications is
transferred to the client. An example of such an architecture is the Display-Only
File Server (DOFS) architecture [13]. However, in these approaches, a modified
client is neither detected nor handled.

Kuhlmann et al. [14] discuss similar scenarios as in our paper. The key differ-
ence to our work is that they do not focus on insider attacks and do not analyze
how different protection mechanisms prevent insider attacks.

This work is also based on [15], in which we have analyzed existing architec-
tures that aim at preventing insider attacks and explained the need for protection
mechanisms on the level of the operating system.

8 Conclusions and Future Work

In this paper, we presented an architecture for document processing, as an ex-
ample, and analyzed insiders attacks on this architecture. Then, we performed
a threat analysis and extracted requirements for a protection architecture that
prevents these attacks. We introduced a four layer protection architecture based
on virtualization techniques that fulfills these requirements. Among our mech-
anisms, we developed an authentication and communication protocol that is
robust against masquerading attacks and ensures a confidential communication
channel between client and server. We are finished with the implementation of
this protection architecture. Currently, we are migrating the client of a docu-
ment processing architecture developed by us into a trusted virtual machine.
After that, we will perform penetration tests on the client and evaluate the
effectiveness of the proposed protection mechanisms.

156 F. Stumpf, P. Röder, and C. Eckert

References

1. Gordon, L.A., Loeb, M.P., Lucyshyn, W., Richardson, R.: 2006 CSI/FBI Computer
Crime and Security Survey. Technical report, CSI (2006)

2. Group, T.C.: Trusted Platform Module (TPM) specifications. Technical report
(2006), https://www.trustedcomputinggroup.org/specs/TPM

3. Goldberg, R.P.: Survey of Virtual Machine Research. Computer 7, 34–45 (1974)
4. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a

TCG-based Integrity Measurement Architecture. In: 13th USENIX Security Sym-
posium, IBM T. J. Watson Research Center (2004)

5. Stumpf, F., Benz, M., Hermanowski, M., Eckert, C.: An Approach to a Trustwor-
thy System Architecture using Virtualization. In: ATC-2007. Proceedings of the
4th International Conference on Autonomic and Trusted Computing, Hong Kong,
China. LNCS, Springer, Heidelberg (2007)

6. Base, E.M.S.C.: Towards trustworthy systems with open standards and trusted
computing (2006), http://www.emscb.de/

7. Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Warfield, A., Williamson, M.: Safe
Hardware Access with the Xen Virtual Machine Monitor. In: 1st Workshop on
Operating System and Architectural Support for the on demand IT InfraStructure
(OASIS) (2004)

8. Karger, P.A., Zurko, M.E., Bonin, D.W., Mason, A.H., Kahn, C.E.: A Retrospective
on the VAX VMM Security Kernel. IEEE Trans. Softw. Eng. 17, 1147–1165 (1991)

9. Stumpf, F., Tafreschi, O., Röder, P., Eckert, C.: A Robust Integrity Reporting
Protocol for Remote Attestation. In: Second Workshop on Advances in Trusted
Computing (WATC 2006 Fall) (2006)

10. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual
machine-based platform for trusted computing. In: SOSP 2003. Proceedings of the
nineteenth ACM symposium on Operating systems principles, pp. 193–206. ACM
Press, New York (2003)

11. Liedtke, J.: On Micro-Kernel Construction. In: SOSP 1995. Proceedings of the
fifteenth ACM symposium on Operating systems principles, pp. 237–250. ACM
Press, New York (1995)

12. Sadeghi, A.R., Scheibel, M., Stüble, C., Wolf, M.: Play it once again, sam - enforcing
stateful licenses on open platforms. In: 2nd Workshop on Advances in Trusted
Computing (WATC 2006 Fall) (2006)

13. Yu, Y., Chiueh, T.: Display-Only File Server: A Solution against Information Theft
Due to Insider Attack. In: DRM 2004. Proceedings of the 4th ACM workshop on
Digital rights management, pp. 31–39. ACM Press, New York (2004)

14. Kuhlmann, D., Landfermann, R., Ramasamy, H., Schunter, M., Ramunno, G.,
Vernizzi, D.: An open trusted computing architecture - secure virtual machines en-
abling user-defined policy enforcement. Technical report, Open Trusted Computing
consortium (OpenTC) (2007)

15. Röder, P., Stumpf, F., Grewe, R., Eckert, C.: Hades - Hardware Assisted Document
Security. In: Second Workshop on Advances in Trusted Computing (WATC 2006
Fall), Tokyo, Japan (2006)

https://www.trustedcomputinggroup.org/specs/TPM
http://www.emscb.de/

Detecting Motifs in System Call Sequences

William O. Wilson, Jan Feyereisl, and Uwe Aickelin

School of Computer Science, The University of Nottingham, UK
{wow,jqf,uxa}@cs.nott.ac.uk

Abstract. The search for patterns or motifs in data represents an area
of key interest to many researchers. In this paper we present the Motif
Tracking Algorithm, a novel immune inspired pattern identification tool
that is able to identify unknown motifs which repeat within time series
data. The power of the algorithm is derived from its use of a small number
of parameters with minimal assumptions. The algorithm searches from
a completely neutral perspective that is independent of the data being
analysed and the underlying motifs. In this paper the motif tracking
algorithm is applied to the search for patterns within sequences of low
level system calls between the Linux kernel and the operating system’s
user space. The MTA is able to compress data found in large system
call data sets to a limited number of motifs which summarise that data.
The motifs provide a resource from which a profile of executed processes
can be built. The potential for these profiles and new implications for
security research are highlighted. A higher level system call language for
measuring similarity between patterns of such calls is also suggested.

1 Introduction

The investigation and analysis of time series data is a popular and well studied
area of research. Common goals of time series analysis include the desire to
identify known patterns in a time series, to predict future trends given historical
information and the ability to classify data into similar clusters. Historically,
statistical techniques have been applied to this problem domain whilst Immune
System (IS) inspired techniques have remained fairly limited [1]. In this paper
we describe the Motif Tracking Algorithm (MTA), a deterministic but non-
exhaustive approach to identifying repeating patterns in time series data. The
MTA abstracts principles from the human immune system, in particular the
immune memory theory of Eric Bell [2]. Implementing principles from immune
memory to be used as part of a solution mechanism is of great interest to the
immune system community and here we are able to take advantage of such a
system. The MTA implements the Bell immune memory theory by proliferating
and mutating a population of solution candidates using a derivative of the clonal
selection algorithm [3].

A subsequence of a time series that is seen to repeat within that time series is
defined as a motif. The objective of the MTA is to find those motifs. The power
of the MTA comes from the fact that it has no prior knowledge of the time series

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 157–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

158 W.O. Wilson, J. Feyereisl, and U. Aickelin

to be examined or what motifs exist. It searches in a fast and efficient manner
and the flexibility incorporated in its generic approach allows the MTA to be
applied across a diverse range of problems. The MTA has already been applied
to motif detection in industrial data sets [2]. Here we test its generic properties
by applying it to motif identification in system call data sets.

Considerable research has already been performed on identifying known pat-
terns in time series [4]. In contrast little research has been performed on looking
for unknown motifs in time series. A distinguishing feature of the MTA is its
ability to identify variable length unknown patterns that repeat in a time se-
ries. This focus on the detection of unknown patterns makes it an ideal tool for
investigating underlying patterns in low level system data generated from the
execution of processes on a computer system. The nature of program execution,
with the re-use of functions and methods, along with standardised programming
structures, implies a set of motifs do exist within each running process. Each
process on a system is executed by issuing sequences of system calls which are
translated by the kernel into data understandable by the underlying hardware.
All processes rely on such system calls making them of high interest to the secu-
rity community. By looking at the sequences of such system calls, we can observe
repeating motifs, which will be identifiable and explainable in terms of higher
level functions. The MTA provides an ideal mechanism to compress the data
found in these large system call data sets to a limited number of motifs which
effectively summarise that data. The motifs could then provide a resource from
which we can build a profile of executed processes. These profiles could be used
to identify sequences that indicate potentially anomalous process behaviour.

Related work on motif detection is discussed in Section 2 with details of system
calls found in Section 3. Terms and definitions used are covered in Section 4
followed by the MTA pseudo code and the problem to be addressed in Sections
5 and 6. Results and future work are found in Sections 7 and 8 before concluding
in Section 9.

2 Related Work

The search for patterns in data is relevant to a diverse range of fields, including
biology, business, finance and computer security. For example, Guan [5] addresses
DNA pattern matching using lookup table techniques that exhaustively search
the data set to find recurring patterns. Investigations using a piecewise linear
segmentation scheme [6] and discrete Fourier transforms [7] provide examples
of mechanisms to search a time series for a particular motif of interest. An
underlying assumption in all these common approaches is that the pattern to be
found is known in advance. The matching task is much simpler as the algorithm
just has to find re-occurrences of the required pattern.

The search for unknown motifs is at the heart of the work conducted by Keogh
et al. Keoghs probabilistic [8] and Viztree algorithms [9] are very successful in
identifying unknown motifs but they require additional parameters compared
to the MTA and they also assume prior knowledge of the length of the motif

Detecting Motifs in System Call Sequences 159

to be found. Motifs longer and potentially shorter than this predefined length
may remain undetected in full. Work by Tanaka [10] attempts to address this
issue by using minimum description length to discover the optimal length for
the motif. Fu et al. [11] use self-organising maps to identify unknown patterns in
stock market data, by representing patterns as perceptually important points.
This provides an effective solution but again the patterns found are limited to a
predetermined length.

This prior awareness of the patterns to find, or their lengths, is not appropri-
ate for intrusion detection systems as by their very nature intrusion techniques
are constantly changing to avoid detection. This represents an ideal application
for the MTA as it makes no such pre-assumptions and aims to find all unknown
motifs of variable length from the data set. Security researchers have been in-
vestigating system calls for a number of years. System calls represent a low
level communication mechanism between processes and the systems’ underlying
hardware, providing a high enough level of abstraction for intelligent process
behaviour analysis and modelling. The use of system calls for anomaly detec-
tion was first introduced by Forrest et al. [12]. Their IS inspired work looks at
sequences of system calls using a sliding window mechanism. System calls are
used to generate a database of normal behaviour, i.e. self, which is consequently
used to capture anomalous behaviour, non-self.

Forrest’s work instigated a new stream of intrusion detection research, with
some researchers taking the idea of generating a database of normal behaviour
and extending it further [13]. Novel approaches to solving related issues by vary-
ing the methods and types of signals used to generate a set of normal behaviour
were also proposed [14]. Tandon et al. have looked at system call motifs as a
source for their normal behaviour profile generation, however this differs from
our approach because it uses an exhaustive search mechanism [15].

3 Intrusion Detection and System Calls

System calls are lower level functions/methods, which act as a communication
channel between higher level processes (e.g. executable commands) and the lower
level kernel of an operating system (OS). The system calls perform system actions
on behalf of a user. Each system call performs a slightly different atomic task, yet
in combination they achieve much more complex functionality. Examples of some
of the simplest system calls are the file I/O calls, such as open(), read(), write()
and close(). An application or a process can produce on average between a
dozen and thousands of system calls per execution, depending on the complexity
of the task. As such system calls are ideal data signals from a security point
of view, they provide a detailed view of a system or process operation while
avoiding complex issues such as encryption or other possible higher level evasion
mechanisms.

The focus of the MTA is to look for variable length unknown motifs in the
data. This fits nicely with system calls as we are interested in seeing if motifs
exist in system call execution sequences. Our inspiration originates from the

160 W.O. Wilson, J. Feyereisl, and U. Aickelin

way that programs are written, compiled and executed. An application usually
consists of various classes, objects, methods or functions, along with variables
and constants. All these structures are high level constructs, that are processed
by lower level libraries which execute appropriate system calls accordingly. These
atomic functions, which are deterministic as they do not depend on any variable
input, are likely to form the building blocks of our motifs of interest, no matter
what application calls them. The combination of such motifs could then provide
a resource to generate a profile for a process that distinguishes a permitted
execution from a malicious one.

The MTA provides a mechanism for compressing and summarising all this
system call data into a number of repeating motifs that are prevalent in the
data. The MTA would highlight consistent patterns in the data that are un-
derstandable and of value to the user, to aid in the generation of these process
profiles. The ability of the MTA to find variable length motifs, with no assump-
tions about the data or the motifs to find, ensures it is flexible enough to carry
out such a task.

4 Motif Detection: Terms and Definitions

Whilst immunology provides the inspiration for the theory behind the MTA
(see [2] for more information), the work of Keogh et al. [8] is the inspiration for
the time series representation used by the MTA. Keogh’s Symbolic Aggregate
approXimation (SAX) technique for representing a time series was utilised. Many
of the following definitions used by the MTA are adapted from the work of Keogh
[8], as summarised below.

Definition 1. Time series. A time series T = t1,...,tm is a time ordered set of
m real or integer valued variables. In order to identify patterns in T in a fast
and efficient manner we break T up into subsequences.

Definition 2. Subsequence. “Given a time series T of length m, a subsequence
C of T consists of a sampling of length n ≤ m of contiguous positions from T.”
[8]. Subsequences are extracted using a sliding window technique.

Definition 3. Sliding window. Given a time series T of length m, and a sub-
sequence C of length n, a symbol matrix S of all possible subsequences can be
built by sliding a window of size n across T, one point at a time, placing each
subsequence into S. After all sliding windows are assessed S will contain (m -
n + 1) subsequences. Each subsequence generated could represent a potential
match to any of the other subsequences within S. If two subsequences match, we
have found a pattern in the time series that is repeated. This pattern is defined
as a motif.

Definition 4. Motif. A subsequence from T that is seen to repeat at least once
throughout T is defined as a motif. The re-occurrence of the subsequence need

Detecting Motifs in System Call Sequences 161

not be exact for it to be considered as a motif. The relationship between two
subsequences C1 and C2 is assessed using a match threshold r. We use the most
common distance measure (Euclidean distance) to examine the match between
two subsequences C1 and C2, ED(C1, C2). If ED(C1, C2) ≤ r the subsequences
C1 and C2 are deemed to match and thus are saved as a motif. The motifs
prevalent in a time series are detected by the MTA through the evolution of a
population of trackers.

Definition 5. Tracker. A tracker represents a signature for a motif sequence that
is seen to repeat. It has within it a sequence of 1 to w symbols that are used to
represent a dimensionally reduced equivalent of a subsequence. The subsequences
generated from the time series are converted into a discrete symbol string using
an intuitive technique described in Section 5. The trackers are then used as a
tool to identify which of these symbol strings represent a recurring motif. The
trackers also include a match count variable to indicate the level of stimulation
received during the matching process.

5 The Motif Tracking Algorithm

The MTA pseudo code is detailed in Program 1. and a brief summary of this al-
gorithm as applied to system call analysis is described in the subsequent sections.
The MTA parameters include the length of a symbol s, the match threshold r,
and the alphabet size a.

Convert Time Series T to Symbolic Representation. The MTA takes
as input a univariate time series data set consisting of system call data which
has been converted to a list of integers as described in Section 6. To minimise
amplitude scaling issues with subsequence comparisons across T we normalise
the time series. We then use the SAX representation [8] to discretise the time
series under consideration. SAX is a powerful compression tool that uses a dis-
crete, finite symbol set to generate a dimensionally reduced version of a time

Program 1. MTA Pseudo Code
Initiate MTA (s, r, a)
Convert Time series T to symbolic representation
Generate Symbol Matrix S
Initialise Tracker population to size a
While (Tracker population > 0)
{

Generate motif candidate matrix M from S
Match trackers to motif candidates
Eliminate unmatched trackers
Examine T to confirm genuine motif status
Eliminate unsuccessful trackers
Store motifs found
Proliferate matched trackers
Mutate matched trackers

}
Memory motif streamlining

162 W.O. Wilson, J. Feyereisl, and U. Aickelin

series consisting of symbol strings. This intuitive representation has been shown
to rival more sophisticated reduction methods such as Fourier transforms and
wavelets [8].

Using SAX we slide a window of size s across the time series T one point at
a time. Each sliding window represents a subsequence of system calls from T.
The MTA calculates the average of the values from the sliding window and uses
that average to represent the subsequence.

The MTA now converts this average value into a symbol string. The user pre-
defines the size a of the alphabet used to represent the time series T. Given T
has been normalised we can identify the breakpoints for the alphabet characters
that generate a equal sized areas under the Gaussian curve [8]. The average value
calculated for the sliding window is then examined against the breakpoints and
converted into the appropriate symbol. This process is repeated for all sliding
windows across T to generate m-s+1 subsequences, each consisting of symbol
strings comprising one character.

Generate Symbol Matrix S. The string of symbols representing a subse-
quence is defined as a word. Each word generated from the sliding window is
entered into the symbol matrix S. The MTA examines the time series T using
these words and not the original data points to speed up the search process.
Symbol string comparisons can be performed efficiently to filter out bad motif
candidates, ensuring the computationally expensive Euclidean distance calcula-
tion is only performed on those motif candidates that are potentially genuine.

Having generated the symbol matrix S, the novelty of the MTA comes from
the way in which each generation a selection of words from S, corresponding to
the length of the motif under consideration, are extracted in an intuitive manner
as a reduced set and presented to the tracker population for matching.

Initialise Tracker Population to Size a. The trackers are the primary tool
used to identify motif candidates in the time series. A tracker comprises a se-
quence of 1 to w symbols. The symbol string contained within the tracker rep-
resents a sequence of symbols that are seen to repeat throughout T. Tracker
initialisation and evolution is tightly regulated to avoid proliferation of ineffec-
tive motif candidates. The initial tracker population is constructed of size a to
contain one of each of the viable alphabet symbols predefined by the user. Each
tracker is unique, to avoid unnecessary duplication of solution candidates and
wasted search time.

Trackers are created of a length of one symbol. The trackers are matched to
motif candidates via the words presented from the stage matrix S. Trackers that
match a word are stimulated; trackers that attain a stimulation level ≥ 2 indicate
repeated words from T and become candidates for proliferation. Given a motif
and a tracker that matches part of that motif, proliferation enables the tracker
to extend its length by one symbol each generation until its length matches that
of the motif.

Detecting Motifs in System Call Sequences 163

Generate Motif Candidate Matrix M from S. The symbol matrix S con-
tains a time ordered list of all the words, each containing just one symbol, that
are present in the time series. Neighbouring words in S contain significant over-
lap as they were extracted via the sliding windows. Presenting all words in S
to the tracker population would result in potentially inappropriate motifs being
identified between neighbouring words. To prevent this issue such ‘trivial’ match
candidates are removed from the symbol matrix S. Trivial match elimination
(TME) is achieved as a word is only transferred from S for presentation to the
tracker population if it differs from the previous word extracted. This allows the
MTA to focus on significant variations in the time series and prevents excessive
time being wasted on the search across uninteresting variations.

Excessively aggressive trivial match elimination is prevented by limiting the
maximum number of consecutive trivial match eliminations to s, the number of
data points encompassed by a symbol. In this way a subsequence can eliminate as
trivial all subsequences generated from sliding windows that start in locations
contained within that subsequence (if they generate the same symbol string)
but no others. The reduced set of words selected from S is transferred to the
motif candidate matrix M and presented to the tracker population for matching.

Match Trackers to Motif Candidates. During an iteration each tracker is
taken in turn and compared to the set of words in M. Matching is performed
using a simple string comparison between the tracker and the word. We define
a match to occur if the comparison function returns a value of 0, indicating a
perfect match between the symbol strings. Each matching tracker is stimulated
by incrementing its match counter by 1.

Eliminate Unmatched Trackers. Trackers that have a match count >1 in-
dicate symbols that are seen to repeat throughout T and are viable motif can-
didates. Eliminating all trackers with a match count < 2 ensures the MTA only
searches for motifs from amongst these viable candidates. Knowledge of possible
motif candidates from T is therefore carried forward by the tracker population.
After elimination the match count of the surviving trackers is reset to 0.

Examine T to Confirm Genuine Motif Status. The surviving tracker pop-
ulation indicates which words in M represent viable motif candidates. However
motif candidates with identical words may not represent a true match when
looking at the time series data underlying the subsequences comprising those
words. In order to confirm whether two matching words X and Y, containing
the same symbol strings, correspond to a genuine motif we need to apply a dis-
tance measure to the original time series data associated with those candidates.
The MTA uses the Euclidean distance to measure the relationship between two
motif candidates ED(X,Y).

If ED(X,Y) ≤ r a motif has been found. The match count of that tracker is
stimulated to indicate a match. A memory motif is created to store the symbol
string associated with X and Y. The start locations of X and Y are also saved.

164 W.O. Wilson, J. Feyereisl, and U. Aickelin

For further information on the derivation of this matching threshold please refer
to [2]. The MTA then continues its search for motifs, focusing only on those
words in M that match the surviving tracker population in an attempt to find
all occurrences of the potential motifs. The trackers therefore act as a pruning
mechanism, reducing the potential search space to ensure the MTA only focuses
on viable candidates.

Eliminate Unsuccessful Trackers. The MTA now removes any unstimulated
trackers from the tracker population. These trackers represent symbol strings
that were seen to repeat but upon further investigation with the underlying
data were not proven to be valid motifs in T.

Store Motifs Found. The motifs identified during the confirmation stage are
stored in the memory pool for review. Comparisons are made to remove any
duplication. The final memory pool represents the compressed representation of
the time series, containing all the re-occurring patterns present.

Proliferate Matched Trackers. Proliferation and mutation are needed to
extend the length of the tracker so it can capture more of the complete motif. At
the end of the first generation the surviving trackers, each consisting of a word
containing a single symbol, represent all the symbols that are applicable to the
motifs in T. The complete motifs in T can only consist of combination of these
symbols. This subset of trackers is therefore stored as the mutation template for
use by the MTA.

Proliferation and mutation to lengthen the trackers will only involve sym-
bols from the mutation template and not the full symbol alphabet, as any other
mutations would lead to unsuccessful motif candidates. During proliferation the
MTA takes each surviving tracker in turn and generates a number of clones equal
to the size of the mutation template. The clones adopt the same symbol string
as their parent.

Mutate Matched Trackers. The clones generated from each parent are taken
in turn and extended by adding a symbol taken consecutively from the mutation
template. This creates a tracker population with maximal coverage of all poten-
tial motif solutions and no duplication. The tracker pool is fed back into the
MTA ready for the next generation. A new motif candidate matrix M consisting
of words with two symbols is now formulated to present to the evolved tracker
population. In this way the MTA builds up the representation of a motif one
symbol at a time each generation to eventually map to the full motif.

Given the symbol length s we generate a word consisting of two consecutive
symbols by taking the symbol from matrix S at position i and that from posi-
tion i+s. Repeating this across S, and applying trivial match elimination as per
Section 5, the MTA obtains a new motif candidate matrix M in generation two,
each entry of which contains a word of two symbols, covering a length of 2 x s.

Detecting Motifs in System Call Sequences 165

The MTA continues to prepare and present new motif candidate matrix data
to the evolving tracker population each generation. The motif candidates are
built up one symbol at a time and matched to the lengthening trackers. This
flexible approach enables the MTA to identify unknown motifs of a variable
length. This process continues until all trackers are eliminated as non matching
and the tracker population is empty. Any further extension to the tracker pop-
ulation will not improve their fit to any of the underlying motifs in T.

Memory Motif Streamlining. The MTA streamlines the memory pool, re-
moving duplicates and those encapsulated within other motifs to produce a list
of motifs that it associates with T.

6 Detection of System Call Patterns

This paper demonstrates that an execution of a process shall produce a sequence
of system calls containing a number of motifs of variable lengths and these shall
be identifiable by the MTA. Such motifs should re-occur when the same or similar
processes are run. The motifs in system call sequences can be used in various
security applications, for example as a data reduction tool for behaviour profiling
within an Intrusion Detection System (IDS).

In our experiments we have two machines connected by a local network. The
client machine (Windows XP machine running an SSH client PuTTY version
0.57) connects to the server machine (Debian Linux) which then performs ac-
tions based on commands sent by the client. Our experiments use a VMware
virtual machine, running a Debian Linux distribution, v.3.3.5-13, with a Linux
kernel, v.2.4.27-2, as our SSH server. The SSH daemon process (OpenSSH 3.8.1p1
Debian-8.sarge.6) is monitored along with all its children, using the standard
strace utility. All system calls generated by the SSH daemon and its child pro-
cesses are logged and stored in separate files based on their process ID (PID).

The following sequence of actions is executed to generate our data set. The
client connects to the server and an SSH session is established. The following
commands, chosen at random, are then issued by the client: ls, ls, ls -lsa, pwd,
ls, ps, ps aux, ls -lsa, chmod a+x file, chmod a+x directory, ls -lsa, chmod a-x
file. The client then disconnects from the SSH server.

The PID files generated are concatenated to produce one file. During concate-
nation the PID file from the child with the smallest PID is added to the parent
data, this is then repeated for each remaining child process. Concatenation re-
sults in a single data set containing system call names with their respective
arguments. The data is further pre-processed by converting the individual sys-
tem call names to their appropriate Linux OS id numbers and removing their
arguments. This generates a one dimensional data set comprising a sequence of
8,040 system call numbers.

From the data set generated it can be observed that a small sequence of system
calls relating to one particular monitored child process is repeated across a large
proportion of the data. This process looks after the SSH terminal operation for

166 W.O. Wilson, J. Feyereisl, and U. Aickelin

the duration of the whole SSH session. Repeated read() and write() calls and
various real time system call actions are performed over and over again. Due to
the basic nature of this repeating sequence, it is not deemed of interest to our
analysis. Instead we focus on the last 1,000 system calls from the data set, to
investigate motifs that occur during the last seven commands issued by the client.
The data set generated is available at http://cs.nott.ac.uk/∼jqf/MTA scdata.dat.

7 Results

Having introduced the MTA we now provide some experimental results which
examine the ability of the MTA to identify motifs present in system call data.
As defined in Section 6 the data set examined consists of 1,000 system calls
represented by an ordered list of 1,000 integers. A bind threshold r = 0 was
set since system call sequences need to match identically. Symbol length s and
alphabet size a values were varied to investigate the sensitivity of the MTA to
these parameters. The MTA was written in C++ and run on a Windows XP
machine with a Pentium M 1.7 Ghz processor with 1.0 Gb of RAM.

7.1 System Call Motifs Identified by the MTA

In this scenario a = 10 to give a large alphabet diversity and s took the values
10, 20 and 40. To evaluate the impact on speed and accuracy the MTA was
run with trivial match elimination (TME) and with no trivial match elimination
(NTME). We focus on significant motifs whose length exceeds 40 system calls
to enable fair comparison across different values of s. With s = 10 and NTME
eight motifs are identified. Table 1 lists these motifs with the number of system
calls they encompass and the start locations where they occur in the data set.

Motif 1 dominates the data set, it consists of 280 system calls and occurs
twice in the data set from locations 386 and 717. Figure 1 presents the list of
system calls from location 350 to 1,000 and motif 1 is clearly evident in this
sequence. From the commands issued during the SSH session (Section 6), we
observe the existence of motifs within the command list itself as there are repe-
titions of the ls and chmod commands. From the MTA’s analysis of the system

Table 1. List of motifs found by the MTA

Motif No. Length Start Locations

1 280 386, 717

2 80 0, 227

3 70 8, 160, 235

4 50 198, 262

5 50 668, 950

6 40 39, 191, 266, 324

7 40 619, 668, 950

8 40 77, 120

Detecting Motifs in System Call Sequences 167

Fig. 1. Illustration of system calls 350 to 1,000, highlighting the occurrence of Motif 1
from system call 386 to 665 and 717 to 996

call data set, motif 1 relates to the repetition of these two observed commands.
The ls commands contain the same arguments (-lsa) across both repetitions,
whilst the chmod command includes execute permissions for all users to a file in
the first occurrence and removes those same privileges from the file during the
second occurrence. Motif 1 represents two processes occurring in succession at
two different time points within the overall SSH session. Motif 1 also contains
other sub-motifs such as motif 7. Motif 7 occurs at three different positions as
seen from Table 1. This motif represents the chmod command that was executed
three times during the session, each time with different arguments. The motifs
found by the MTA are a super-set of those evident in the original command list,
validating the accuracy of the MTA. The existence of motif 7 shows that appli-
cations with varying arguments (i.e. performing different actions), have atomic
motifs that could be used for data reduction in a security application.

Motif 2 is the second largest motif, which has two repetitions in the data set.
It relates to the execution of the ps command. This command occurred twice in
succession, with different arguments, spawning a new process each time. Motif 2
represents 80 system calls that are identical across these two spawned processes.
Motifs 3, 4 and 8 partly overlap with motif 2 indicating a subset of system calls
from motif 2 that is consistent across all these motifs. However this subset occurs
with a higher frequency than motif 2, representing similarities between atomic
parts of the ps processes not fully captured by the motif 2. This highlights parts
of the process execution that are more dynamic and input dependent and which
need to be dealt with when considering an IDS.

Motif 6 again relates to a component of the ps command. At a lower level,
the ps command reads a number of small files from the /proc/ directory of the
Linux OS and prints the read information onto the screen. This information
shows the running processes on the system to the user. From this a recurring
sub-pattern of open(), read() and close() system calls with various arguments is
observed. This sub-pattern is largely dependant on the input of the ps command.

168 W.O. Wilson, J. Feyereisl, and U. Aickelin

In this case it is the number of running processes on the monitored system,
which in turn is the number of files in the aforementioned /proc/ directory. The
motifs generated by the MTA are formed by such atomic system call sequences.
The randomness in the input, which results in motifs of variable lengths is of
major importance when considering IDS systems. For this purpose a system call
expression language is proposed which, besides giving the MTA an alternative
representation to assess system call similarity, gives security researchers a regular
expression type language for describing system call motifs at a higher level. This
language is described in more detail in Section 8.

In the above analysis we have focused on significant motifs with sequences
exceeding 40 system calls. The advantage of using the MTA on system call data
and not the command list becomes apparent when we look at the shorter motifs
that are generated, as these indicate atomic motifs that are found across varying
command instructions. One such motif, referred to as Z, has a length of 30 system
calls and occurred five times at positions 387, 620, 669, 718 and 951. Motif Z
relates to the re-occurrence of a sequence that occurs during the initialisation of
newly spawned processes executed across the commands ls -lsa, chmod a+x file,
chmod a+x directory, ls -lsa and chmod a-x file respectively. Each C application
under Linux, when it starts, calls and loads the standard C library, libc. The
occurrences of motif Z corresponds to the loading of this library. Thus the MTA
has found a motif that is present but embedded across differing commands. This
approach of using system calls as input to the MTA, and not the commands,
would aid in the detection of exploits that are far smaller than the commands
themselves. An example of such an exploit is the SQL slammer worm which is
only 376 bytes long, compared to the text segment of the chmod command of
29,212 bytes.

7.2 Sensitivity to Changes in the Symbol Length s

In total 961 of the 1,000 system calls are identified as being part of one or more of
these eight motifs. From these results it is clear the MTA is able to successfully
identify a reduced set of motifs from the large system call data set. By varying
the value of s and the use of trivial match elimination we can examine the
sensitivity of the MTA and assess its ability to retain knowledge of these eight
motifs. The results of this sensitivity analysis can be seen in Table 2.

Table 2 shows the total number of motifs found and the execution time of
the MTA for the various values of s. In addition a measure of the quality of

Table 2. Sensitivity of the MTA to variations in the symbol length s

Motifs found Execution time (sec) Motif quality measure

s NTME TME NTME TME NTME TME

10 8 6 315.8 262.0 1,490 1,230

20 5 4 56.9 26.5 1,140 940

40 4 3 12.1 1.9 960 720

Detecting Motifs in System Call Sequences 169

the motifs found is included by multiplying the identified length of the motif
by the identified frequency and summing for all motifs found. Any omissions in
the length or frequency of the complete motif will cause a decline in this quality
measure.

As the symbol length s increases, the number of motifs detected declines. This
appears logical as a higher s implies the search is less fine grained. Introducing
TME also reduces the number of motifs found. TME significantly reduces the size
of the motif candidate matrix M resulting in fewer candidates being examined.
TME is key to the dimensionality reduction of the original data set leading to
a fast search process, however it would appear that its inclusion does lead to a
loss in detection accuracy.

Given NTME, the MTA is only able to identify four of the eight motifs (1,
2, 6 and 7) if s rises from 10 to 40. The quality measure also indicates that, of
the motifs found, there appears to be a loss in the detection of the full length
or frequency of occurrence. The quality measure falls from 1,490 to 960. Of the
four motifs still detected we lose 40 system calls from motif 1 and we only detect
two of the three repetitions of motif 7. However raising the symbol length from
10 to 40 results in a 96.2% reduction in the MTA execution time, taking only
12.1 seconds compared to 315.8.

7.3 Sensitivity to Changes in the Alphabet Size a

Adjusting the alphabet size alters the symbol set used to represent the time
series. Reducing a means a greater diversity of sequences are now grouped to-
gether as similar. TME with a reduced alphabet set should lead to a larger
number of trivial match eliminations, leading to a faster but potentially less ac-
curate search. This hypothesis is confirmed when we look at Table 3 which lists
the motifs found for various alphabet sizes. In this scenario s = 20, r = 0 and a
took the values 10, 8, 6, and 4.

Table 3 shows the alphabet size has no impact on the detection ability of the
MTA if there is NTME. The five motifs detected when s = 20, a = 10 (Table 2)
are always found and have the same quality measurement. However the search
time of the MTA with NTME improves by 30.1% as a is reduced from 10 to 4.

With TME activated, changes to a have a more significant impact on the
motifs detected. Reducing a from 10 to 8 causes the MTA to lose track of motif 8
but it now finds motif 2. As motif 2 is longer than motif 8 we get an improvement

Table 3. Sensitivity of the MTA to variations in the alphabet size a

Motifs found Execution time (sec) Motif quality measure

a NTME TME NTME TME NTME TME

10 5 4 56.9 26.5 1,140 940

8 5 5 48.0 19.8 1,140 1,140

6 5 3 43.3 16.1 1,140 860

4 5 5 39.8 6.3 1,140 1,140

170 W.O. Wilson, J. Feyereisl, and U. Aickelin

in the overall motif quality measure from 940 to 1,140. Reducing a further from
8 to 4 causes the MTA to lose motif 6 but gain knowledge of motif 4. Thus we
see that TME causes a change in the location in search space where the MTA
conducts its search, resulting in less consistent results.

One could imply that this inconsistency due to trivial match elimination is
detrimental to this particular search problem but this need not be the case. As is
evident from Table 3 trivial match elimination significantly improves the search
time of the MTA and the results from including trivial match elimination are
still satisfactory. When a=4 activating trivial match elimination results in the
MTA still finding five motifs but it reduces the search time by 84.2% from 39.8
seconds to 6.3 seconds and with no loss to the quality of those five motifs found.

7.4 Summary Discussion of Results

From these results it is apparent that the MTA is able to identify motifs that are
present in this system call data set. The MTA can compress the original data set
of 1,000 system calls down to eight repeating motifs. A trade off between speed
and accuracy becomes apparent as the user is able to adjust the parameters
of the algorithm to speed up the search process at the cost of a reduction in
detection capability, allowing a flexible search mechanism.

The sensitivity to changes in s and a noted here is due to the nature of system
call data. In this paper we group system calls together as similar by averaging
their system call values over a fixed sized window. These are then grouped by
boundary conditions and represented by a symbol which is then subject to trivial
match elimination. With system calls there is no real relationship between two
separate system call values, i.e. system call 2 is not twice as large as system
call 1. Therefore one could argue that a more appropriate representation may
be more suitable as is discussed in Section 8.

The results show that the MTA, developed to identify motifs in financial and
industrial data sets, is successful in identifying motifs in system call data due to
its generic and flexible approach. It provides a useful tool to compress a large
data set into small subset of repeating patterns that are of immediate value to
the user.

8 Future Work

The difficulty with analysing system call sequences for the purposes of intrusion
detection is that the variety of sequences generated is largely dependant on the
diversity of the application’s input. This potential variety sidesteps most forms
of pattern detection as long as the detection mechanism is not able to encode the
variations in a manner that is granular enough to be able to distinguish between
normal and anomalous patterns. To address this issue, as part of our future work
we propose a system call expression language (SCEL), which acts as a higher level
regular expression type language consisting of constructs representing atomic
system call motifs of meaningful actions.

Detecting Motifs in System Call Sequences 171

An example of this language can be presented using motif Z of length 30 as de-
scribed in Section 7. In the SCEL motif Z could be represented by a higher level
construct, such as lib loading(libc). Where lib loading represents a particular set
of motifs for that action and (libc) denotes the class to which those motifs belong.
Similar constructs could be devised for other operations which contain atomic
motifs, representative of a higher level functionality. The motifs 2, 3, 4, and 8 in
Table 1 indicate the re-occurrence of the open(), read() and close() system calls.
These three calls could now be represented as one file read(small) construct to
be used for files below a certain size threshold. In addition a file read(large) con-
struct containing a wild card for the number of read() system calls between the
open() and close() calls can be generated for instances when reading larger files,
where numerous read() calls are executed depending on the file’s size. When
reading such a file an attribute of the language construct could denote the num-
ber of motifs present in an observed process.

For example lib loading(libc)[1], file read(small)[*], other(*)[*] could
denote a complete ps command being executed. This language tool would prove
of value to a user as it focuses on a high level of abstraction while maintaining the
ability to conduct fine grained analysis of system calls. This new representation
for system call similarity could now also be used as input for the MTA to enhance
its motif detection ability.

9 Conclusion

The search for patterns or motifs in data represents a generic problem area that
is of great interest to a huge variety of researchers. By extracting motifs that
exist in data we gain some understanding as to the nature and characteristics
of that data, so that we can benefit from that knowledge. The motifs provide
an obvious mechanism to cluster, classify and summarise the data, placing great
value on these patterns.

Little research has been performed looking for unknown motifs in time series.
The MTA takes up this challenge using a novel immune inspired approach to
evolve a population of trackers that seek out and match motifs present in a time
series. The MTA uses a minimal number of parameters with minimal assump-
tions and requires no knowledge of the data examined or the underlying motifs,
unlike other alternative approaches.

In this paper the MTA was applied to motif detection in system call data.
The MTA was shown to compress the data set into a limited number of motifs
that provide good coverage of the original data set resulting in a minimal loss of
information. The authors propose that these motifs highlight repeating or atomic
functions that can be used to build profiles of “system behaviour”. These profiles
could then assist in tasks such as anomaly detection or behaviour classification.

The authors provide information on a system call expression language that
addresses system call granularity issues for computer security applications in the
future. In its current form we believe the MTA offers a valuable contribution to
an area of research that at present has received surprisingly little attention.

172 W.O. Wilson, J. Feyereisl, and U. Aickelin

References

1. Nunn, I., White, T.: The application of antigenic search techniques to time series
forecasting. In: GECCO, pp. 353–360 (June 2005)

2. Wilson, W.O., Birkin, P., Aickelin, U.: Motif detection inspired by immune memory.
In: ICARIS 2007. Proceedings of the 6th International Conference on Artificial
Immune Systems, Santos, Brazil. LNCS, Springer, Heidelberg (2007)

3. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal
selection principle. IEEE Transactions on Evolutionary Computation 6(3), 239–
251 (2002)

4. Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding motifs in time series. In: The
2nd workshop on temporal data mining, at the 8th ACM SIGKDD international
conference on knowledge discovery and data mining (July 2002)

5. Guan, X., Uberbacher, E.C.: A fast look up algorithm for detecting repetitive DNA
sequences. In: Pacific symposium on biocomputing, Hawaii IEEE Tran. Control
Systems Tech. (December 1996)

6. Keogh, E., Smyth, P.: A probabilistic approach to fast pattern matching in time
series databases. In: Proceedings of the third international conference of knowledge
discovery and data mining, pp. 20–24 (1997)

7. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time series databases. In: Proceedings of the SIGMOD conference, pp. 419–429
(1994)

8. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In:
SIGKDD (August 2003)

9. Lin, J., Keogh, E., Lonardi, S.: Visualizing and discovering non trivial patterns in
large time series databases. Information visualization 4(2), 61–82 (2005)

10. Tanaka, Y., Uehara, K.: Discover motifs in multi-dimensional time series using
the principal component analysis and the MDL principle. In: 3rd international
conference on machine learning and data mining in pattern recognition, Leipzig,
Germany, pp. 252–265 (2003)

11. Fu, T.C., Chung, F.L., Ng, V., Luk, R.: Pattern discovery from stock market time
series using self organizing maps. In: Workshop notes of KDD 2001 workshop on
temporal data mining, San francisco, CA, pp. 27–37 (2001)

12. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for UNIX
processes. In: IEEE Symposium on Security and Privacy, pp. 120–128. IEEE Com-
puter Society Press, Oakland, CA (1996)

13. Sekar, R., Bowen, T., Segal, M.: On preventing intrusions by process behavior
monitoring. In: Proceedings of the Workshop on Intrusion Detection and Network
Monitoring, pp. 29–40. USENIX Association, Berkeley, CA (1999)

14. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls:
Alternative data models. In: Proceedings of the 1999 Conference on Security and
Privacy (S&P-99), pp. 133–145. IEEE Press, Los Alamitos (1999)

15. Tandon, G., Chan, P., Mitra, D.: Morpheus: Motif oriented representations to
purge hostile events from unlabeled sequences. In: Proceedings of the 2004 ACM
workshop on Visualization and data mining for computer security, pp. 16–25. ACM
Press, New York (2004)

Comparative Studies in Key Disagreement

Correction Process on Wireless Key Agreement
System

Toru Hashimoto1,�, Takashi Itoh1, Masazumi Ueba1, Hisato Iwai2,
Hideichi Sasaoka2, Kazukuni Kobara4,3, and Hideki Imai3,4

1 ATR Wave Engineering Laboratories, Japan
2 Doshisha University, Japan

3 Chuo University, Japan
4 National Institute of Advanced Industrial Science and Technology (AIST), Japan

hashi@atr.jp

Abstract. This paper describes the comparison of the error-correcting
codes that is adopted by the key disagreement correction process about
wireless key agreement system called ESPARSKEY that is expected to
achieve information-theoretic security. This system consists of AP with
a variable directional antenna, that is, an ESPAR antenna, and UT with
an omni-directional antenna. We employ conditional mutual informa-
tion as the evaluation index. From experimental evaluation results, we
clarified that the best way is adopting BCH(31,16,7) with table-aided
soft-decision decoding as the key disagreement process where one eaves-
dropper exists more than 40cm from UT . After adopting this error-
correcting code, we should transact 200 wireless packets between the
nodes to share a 128-bit unguessable key against an eavesdropper.

1 Introduction

The rapid progress of such wireless communication technologies as RF devices,
signal processing, modulation methods, antennas, and so on have greatly con-
tributed to the cost reduction of terminals and the speed-up of wireless commu-
nication. As a result, such wireless communication as Wireless LAN or Personal
Digital Cellular has become more popular and convenient.

On the other hand, this popularization causes threats, such as tapping by
eavesdroppers (passive attacks) and impersonations from third parties (active
attacks). For active attacks, mutual authentication is the best solution, many
kinds of which are incorporated in much application software.

� This work is part of “Research and development of ultra-high speed giga-bit rate
wireless LAN systems” granted by National Institute of Information and Communi-
cations Technology (NICT).

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 173–187, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

174 T. Hashimoto et al.

The easiest way to protect wireless communication data from passive attack-
ers is to encrypt the data with either public key encryption or common key
encryption. The public key encryption system does not need an identical key for
encryption and decryption, which is an advantage from view of the key manage-
ment that includes key distribution, generation, sharing, and so on.

But it has the disadvantage of low speed. Therefore, it has mainly been used
for key exchange, authentication schemes, and digital signatures. Though a com-
mon key encryption system can encrypt and decrypt at high speed, it must man-
age common secret keys between nodes. For secure encryption using common key
encryption schemes, key management between nodes is crucial.

In the past, many kinds of key management schemes, especially key sharing or
generating methods, have been proposed and adopted at many established wire-
less networks. Representative examples include the Diffie-Hellman key exchange
algorithm [1] and key distribution methods using public key encryption such as
RSA cryptosystem [2]. Both methods can be decoded in practical time if eaves-
droppers have high computational power, which continues to increase rapidly,
because the security of both is based on the difficulty of calculation, such as
the Discrete Logarithm Problem or prime factorization called “computational
security.”

On the other hand, some methods are “unconditional (information-theoretic)
secure,” based on quantum cryptography [3], noisy communication channels [4]
[5], fluctuation of radio wave channels [6], and so on. Even assuming that eaves-
droppers have infinite computational power, these methods are secure since they
are based on information-theoretic security.

In these methods, the most practical solution for wireless communication
systems is the fluctuation of the radio wave channel response. Aono et al. [7]
proposed a system based on the fluctuation of radio wave channels called ES-
PARSKEY that generates and shares keys without distributing them. In addi-
tion, for the intentional fluctuation of radio waves, this system exploits a variable
directional antenna that is called Electronically Steerable Parasitic Array Radi-
ator (ESPAR) antenna [8]. In this system, security evaluation studies have been
performed. Imai et al. [9] reported that this system can achieve unconditionally
secure key agreement as long as the passive eavesdropper is not located too close
(on the order of tens of centimeters) to the players.

In this paper, we describe the comparison of the error-correcting codes that
is adopted by the key disagreement correction process for secure key generating
concerning ESPARSKEY. The key disagreement correction process has possibil-
ities not only of increasing the mutual information between AP and UT but also
decreasing of the mutual information between EV and UT for miscorrection by
error-correcting codes. As the result, the possibility to achieve unconditionally
secure key agreement increases. We give the details of the wireless key gener-
ation system including its components, principle, and procedure in Section 2,
an evaluation index in Section 3, and experiments and evaluations in Section 4.
Finally we conclude this paper in Section 5.

Comparative Studies in Key Disagreement Correction Process 175

Fig. 1. Outline of AP

ESPAR antenna
(variable directional)

Voltage control
circuit(D/A)

Micro
controller

S y ndrome,etc

Pseudo-
random-
number

generator

RF signal

Reactance
vector

Making RSSI
profile

K e y generator

DC
voltage

RS S I value

Communication
device

RF module
D/A

converter

USB

to PC

Fig. 2. Function block diagram of AP

2 Wireless Key Agreement System

2.1 System Configuration

This system consists of Access Point(AP) and User Terminal(UT). AP ’s outline
drawing is shown in Fig. 1, and its function block diagram is shown in Fig. 2
and consists of four parts: “Communication device,” “Microcontroller,” “D/A
converter,” and “7-element ESPAR antenna.”

– The “Communication device” is a CC2420 [10], which is a single-chip 2.4
GHz IEEE 802.15.4 compliant RF transceiver with baseband modem and
MAC support. The simple specifications of the IEEE802.15.4 standard are
shown in Table. 1. IEEE 802.15.4 is used at “ZigBee” as a physical layer and
a MAC layer specification [11]. Such data as syndrome, initial value, etc.

176 T. Hashimoto et al.

Table 1. Specifications of IEEE802.15.4

Frequency 2.4 GHz (ISM band)
· same as wireless LAN

(IEEE802.11b/g)

Channel number 16 CH (CH 11∼CH 26)
· use all CH for key generation
· use arbitrary 1 CH for control

Transmission power 1 mW

Data rate 250 kbps

are set with a microcontroller and communicate with packets through an
ESPAR antenna. The received power of packets is measured and converted
into an RSSI value in this chip.

– “Microcontroller” carries out the “making RSSI profile” and “generating the
key” steps in the “key generator” function. These steps are based on the RSSI
value from the “Communication device.” “Microcontroller” has a USB port
to send the generated keys to a PC by USB cable. The “7-element ESPAR
antenna” needs DC voltage to control the beam pattern of the antenna.
The seeds of DC voltage, called reactance vectors, are made in the “Pseudo
random number generator” function in the “Microcontroller,” which is set
to the “D/A converter.”

– The “D/A converter” changes the digital value of the reactance vectors into
analog DC voltage and sets this voltage to the varactor in the “ESPAR
antenna.” The DC voltage, which ranges from 0 to 5 [V], is set randomly in
4 bits resolution at the “D/A converter.” For example, the radiation patterns
of the 7-element ESPAR antenna result in 246 = 166 = 16777216 patterns,
because it has six parasitic elements.

– The “ESPAR antenna,” which is a variable-directional array antenna with a
single central active radiator surrounded by parasitic elements, is a compo-
nent of AP . The six parasitic elements are located at equal intervals around
a single central active radiator, and each is loaded with a varactor diode,
which is a variable-capacitance diode. By adjusting the DC voltage given to
the varactors with reverse bias, the antenna’s beam can be formed. Because
it only has a single RF radiator, it is expected to have lower power consump-
tion than Digital Beam-Forming (DBF) array antennas. Many studies using
this antenna have been performed for personal wireless communication or
the direction of arrival estimation.

UT ’s outline drawing is shown in Fig. 3, and its function block diagram is
shown in Fig. 4. They consist of three parts: “an omni-directional patch an-
tenna,” “a communication device,” and “a microcontroller.” The role of each
block is identical to AP except for the antenna. The node is connected to the
PC by a USB interface.

Comparative Studies in Key Disagreement Correction Process 177

Fig. 3. Outline of UT

RF module

RF
signal

Making RSSI
profile

Key generator

RSSI value

Communication
device

Omni-directional antenna
(patch antenna)

Micro
controller

USB

to PC

Syndrome, etc

Fig. 4. Function block diagram of UT

2.2 Key Generation

Principle of Key Generation. This key generation system is based on the
reciprocity theorem of radio wave propagation between AP and UT . In addition,
a variable directional antenna called ESPAR antenna is used for intentional
fluctuation. The key is made by this fluctuation of radio waves.

We describe the principle of key generation in detail. We use the beam-forming
technique of the ESPAR antenna; that is, by adjusting the DC voltage given to
the varactors with reverse bias, we can intentionally undulate the response of
the propagation channels between the two nodes. In this condition, we measure
the Received Signal Strength Indicator (RSSI) by alternately transmitting short
packets between nodes. From this measurement, AP and UT can independently
obtain RSSI profiles whose characteristics are identical due to the reciprocity
theorem of radio wave propagation. The same value is provided by making these

178 T. Hashimoto et al.

AP (Access Point) with a
variable directional antenna

UT (User Terminal) with an
omni-directional antenna

Wireless Communication
(without encryption)

Wireless Communication
(without encryption)

Send a packet by beam
pattern A

Receive a packet by omni-
directional pattern

Measure RSSI value

Send a packet by omni-
directional pattern

Receive a packet by beam
pattern A

Measure RSSI value

Build up RSSI profile Build up RSSI profile

Define threshold level Define threshold level

Delete data of the
threshold level
neighborhood

Delete data of the
threshold level
neighborhood

Multilevel coding
(Binary coding)

Multilevel coding
(Binary coding)

Correct disagreement key Correct disagreement key

Wireless Communication
(with encryption)

Wireless Communication
(with encryption)

Set key Set key

●
●
●
●
●
●

●
●
●

P
ro

c
e
du

re
 o

f
ke

y
ge

n
er

at
io

n
 a

n
d

sh
ar

in
g

It
e
ra

ti
o
n

o
f

c
o
nt

ro
lle

d
di

re
ct

io
na

l
be

am
 p

at
te

rn

Information about
delete data

Information about
delete data

Syndrome

Agree/Disagree

Generate a key candidateGenerate a key candidate

TDD:
Time Division Duplex

TDD:
Time Division Duplex

1. RSSI Profile
Generation
Process

2. Data Deletion
Process of the

Threshold
Neighborhood

3. Binary Coding
Process

4. Key Disagreement
Correction Process

Fig. 5. Procedure flow of key generation

profiles multilevel coding, for example, binary coding. As a result, these values
are generated keys in this system.

An eavesdropper (EV), who is a passive attacker listening at another place,
has difficulty obtaining the same key between nodes because EV cannot obtain
the same RSSI profile from AP and UT since their propagation characteristics
are different.

Procedure. Here we describe in detail the procedure of our key generation sys-
tem. The preconditions are set as follows. AP has a 7-element ESPAR antenna,
and UT has a conventional omni-directional antenna. EV is identical as UT
except for the location. AP and UT can communicate at the same frequency by
a method such as Time Division Duplex (TDD). The DC voltage sets at each
varactor diode are connected to the parasitic element of the 7-element ESPAR
antenna using a pseudorandom number.

Comparative Studies in Key Disagreement Correction Process 179

The procedure of this system is shown in Fig. 5 and described as follows.
1. RSSI Profile Generation Process
AP decides a certain directional beam pattern by obtaining pseudorandom
numbers and sending a short packet to UT , which receives a packet from AP
and computes the RSSI value by measuring the received power. A computed
RSSI value is recorded in UT ’s memory. UT returns a short packet to AP
as soon as possible to maintain a propagation environment. AP receives a
packet from UT and computes and records the RSSI value as well as UT . If
a packet isn’t received by UT or AP , a packet-send-error is recognized by
timeout, and AP will change the beam pattern and retry transmission.
Next, AP changes the directional beam pattern and repeats the above proce-
dure N times. Here, N consists of key length K and the length of redundant
bit α, N = K+α. AP and UT can independently compile a RSSI data pro-
file. Thanks to the reciprocity theorem of radio wave propagation between
AP and UT , this profile in the nodes is identical, except for the random
noise, the differences in transmission power, the receiver’s noise figures, and
such antenna performance factors as sensitivity or directivity. From each
profile, AP and UT independently define a threshold level that is consid-
ered the median value of each RSSI profile in this system. Now the value of
the RSSI profile includes noise components. To reduce their influence, this
system has a data deletion process of the threshold neighborhood, which is
shown in Fig. 6.

2. Data Deletion Process of the Threshold Neighborhood
AP and UT have an RSSI profile the size of N . As shown above, N consists
of key length K and the length of redundant bit α. In Fig. 6, K is defined as
6 and α as 4. From this profile, the threshold level is decided by the median
value of each RSSI profile sorted afterwards in each node by ascending order.
At AP , a subset of the RSSI value is chosen as the most susceptible place for
noise by picking the largest K/2 + β and the smallest K/2 + β RSSI values,
with β < α/2 (in Fig. 6, β is defined as 1). The positions of the unchosen
RSSI values are transmitted to UT and deleted at AP and UT . At UT , the
RSSI values undeleted by transmitted information from AP are sorted again
and the process is repeated, this time choosing the largest K/2 and smallest
K/2 RSSI values from the remaining RSSI values. Again, the positions of
the unchosen RSSI values are transmitted to AP , and unchosen RSSI values
are deleted at both nodes. The remaining RSSI profiles whose size is K are
sorted again by original number.

3. Binary Coding Process
These RSSI profiles that have been coded to binary using the threshold level
defined above are candidates for the shared key.

4. Key Disagreement Correction Process
The key disagreement correction process is carried out on these candidates
by an error-correcting code to produce the shared secure keys. In this pro-
cess, we basically consider the bit patterns of key candidates a series of such
block code as BCH code. In this condition, we calculate each syndrome,

180 T. Hashimoto et al.

1
2

3 4
5

6
7

8
9 10 1

2
3 4

5 6
7

8
9 10

Threshold
 level

A series of antenna directivity

R
S
S
I

R
S
S
I

A series of antenna directivity

Threshold
 level

Sort Sort

1
2

3 4
5

6
7

8
9 10 1

2
3 4

56
7

8
9 10

R
S
S
I

R
S
S
I

Delete No.2, No.6
The positions of
the unchosen RSSI values

Delete No.2, No.6

1

3 4
5 7

8
9 10 1

3 4
5 7

8
9 10

R
S
S
I

R
S
S
I

Delete No.9, No.10
The positions of

the unchosen RSSI values
Delete No.9, No.10

Sort Sort

1

3 4
5 7

8

1

3 4
5 7

8

A series of antenna directivity

R
S
S
I

R
S
S
I

A series of antenna directivity

binary coding

100110 100110Key agreement

RSSI profile RSSI profile

AP (Access Point) with a
variable directional antenna

UT (User Terminal) with an
omni-directional antenna

Threshold
 level

Threshold
 level

binary coding

Fig. 6. Data deletion process of the threshold neighborhood

SAP = xAPHT, and SUT = xUTHT, where xAP and xUT are bit patterns in
the key candidates of AP and UT , respectively, HT denotes a check matrix,
and superscript T is the transpose of the matrix. Calculated syndrome SUT

is transmitted from UT to AP . At AP , we define the differences in the syn-
drome as S = SAP − SUT and in the bit patterns as e = xAP − xUT . The
relationship between these parameters is expressed as S = eHT. If S = 0
is true, then e = 0 is true, and both bit patterns of the key candidates are
considered to be in agreement. If S = 0 is false, then we will correctly esti-
mate e to minimize the number of disagreement bits by an error correction
technique. If no agreement is obtained after the key disagreement correction
process, the generated key is rejected, and the entire process is repeated.

Comparative Studies in Key Disagreement Correction Process 181

H(LEV)

H(YUT)
H(LAP)

I(YUT;LAP)

I(YUT;LAP|LEV)

I(YUT;LEV) Eavesdropper
Information

Fig. 7. Entropy relation of LAP , YUT , and LEV

3 Security Evaluation Index

Fig. 7 denotes the entropies and their relation of LAP , YUT , and LEV . In this
figure, L is the set of levels, and Y is the binary encoded data, Y ∈ {0, 1}N .
Each node obtains these values from RSSI profiles. We calculate entropies (H)
and information (I) by estimating the error rate. To estimate the error rate, we
tried the time of the Np key generation procedure to show in Fig. 5. This error
rate estimation procedure is described as the following protocol [9]:

Protocol

1. For i = 1 to Np do:
(a) For i = 1 to N do:

i. AP sends a packet to UT , who receives it, measures its RSSI value,
and records it as RUT (i).

ii. As soon as possible UT returns a packet to AP , who receives it,
measures its RSSI value, and records it as RAP (i).

iii. AP changes the radiation pattern.
Endfor.
AP and UT conclude with their RSSI value sets RAP and RUT ,
respectively.

(b) Both AP and UT perform the following:
i. R is sorted by ascending order L ∈ {1, 2, . . . , N} and is coded to

binary using threshold level TNp , which is the median value of each
RSSI profiles, that is, Yi = 0, if R(i) < TNp and otherwise Yi = 1.
AP and UT conclude with YAP and YUT , respectively.

ii. AP and UT announce YAP and YUT to each other. For i = 1, 2, . . . , N,
AP and UT calculate: err(i) = err(i) + 1, if YAP (i) �= YUT (i).

Endfor.
2. AP and UT compute the estimated error rate(pi) for each level as follows:

For i = 1, 2, . . . , N, : pi = err(i)/Np

182 T. Hashimoto et al.

EV can get its own RSSI value and estimate the error rate by tapping the
communication between AP and UT . After this procedure, we can calculate
entropies H(LAP), H(YUT), and so on.

In Fig. 5, the intersection of H(LAP) and H(YUT) is the amount of informa-
tion about YUT obtained from LAP . In other words, it is mutual information
I(YUT ;LAP) between H(YUT) and H(LAP).

Evaluation of only this quantity presents a problem because this quantity does
not consider the eavesdropper. Because this mutual information I(YUT ;LAP) in-
cludes information obtained by eavesdroppers, their influence must be removed.
The information obtained by the eavesdropper is shown at the intersection of
H(LAP), H(YUT), and H(LEV) and is marked “Eavesdropper Information” in
Fig. 7. For simplicity, we consider this value mutual information I(YUT ;LEV)
between H(YUT) and H(LEV), and we can get the upper bound of the informa-
tion obtained by the eavesdropper. This quantity is shown at the intersection
of H(YUT) and H(LEV) in Fig. 7. We need to evaluate mutual information
I(YUT ;LEV) in addition to the former evaluation.

From these evaluations, the lower bound of mutual information I(YUT ;LAP

|LEV) (based on LAP) that an eavesdropper can’t know is shown as:

I (YUT ;LAP |LEV)≥ I (YUT ;LAP)− I (YUT ;LEV) (1)

In the same way, the lower bound of I(YAP ;LUT |LEV) (based on LUT) is shown
as:

I (YAP ;LUT |LEV)≥ I (YAP ;LUT)− I (YAP ;LEV) (2)

In this paper, we show the calculation result of Eq. (1) defined as the “condi-
tional mutual information per round” because there is little difference between
the calculation result of Eqs. (1) and (2).

4 Evaluation Experiments and Simulations

4.1 Experimental Condition

The conditions of the key generation method are described as follows. Key length
K is 128 bits, and the length of redundant bit α, described in Subsection 2.2, is
256 bits. In other words, the number of RSSI value N is 384 at each node. Np

is at least 100 key generations.
This experimental system has an eavesdropper (EV), whose figure and func-

tion block diagram is the same as UT . The difference between UT and EV is
the positions in which the packet was received.

The experimental room in which we carried out key generation experiments
is shown in Fig. 8. Each node was arranged in 141 points all over the experiment
room that has three metal walls and one concrete wall. The experiment was
performed in turn by each node.

Comparative Studies in Key Disagreement Correction Process 183

Table Table

Table Table

Cabinet

Entrance

PC

8.4m

6
.7

m

Concrete wall Metal wall

PC

Fig. 8. Sketch of experimental room

4.2 Security Evaluation without Key Disagreement Correction
Process

First, we evaluated the security on this wireless key agreement system. Fig. 9
shows the security evaluation results by conditional mutual information. The
vertical scale of this graph is the mutual information per round in each result.
The word ”round” means the process by which AP sends a packet to UT and
UT returns it to AP . In this result, we find the following three things:

– The mutual information between AP and UT shown in (a) is high level at
any distance.

– The mutual information between EV and UT shown in (b) is high level
when the distance between EV and UT is close.

– The system exhibits conditional mutual information 0.6 or higher when there
is one EV more than 40 cm from UT .

This means that to share a 128-bit unguessable key against an eavesdropper
in this procedure without the key disagreement correction process, we should
transact 214 wireless packets between the nodes.

4.3 Comparison of Error-Correcting Codes Concerning Key
Disagreement Correction Process by Computer Simulation

Preparation. When we compare the differences between the error-correctiong
codes concerning key disagreement correction processes by computer simulation,
the following four types of coding methods have been prepared that mainly focus
on implementation for this system:

Method 1. BCH(31,21,5) with table-aided hard-decision decoding.
Method 2. BCH(31,16,7) with table-aided hard-decision decoding.

184 T. Hashimoto et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600
Distance between UT and EV [cm]

C
on

di
tio

na
l m

ut
ua

l i
nf

or
m

at
io

n
[b

it/
ro

un
d]

40 [cm]

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600
Distance between UT and EV [cm]

M
ut

ua
l i

nf
or

m
at

io
n

[b
it/

ro
un

d]

40 [cm]

(a) Mutual Information between AP and UT

(b) Mutual Information between EV and UT

(c) Conditional Mutual Information

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600
Distance between UT and EV [cm]

M
ut

ua
l i

nf
or

m
at

io
n

[b
it/

ro
un

d]

40 [cm]

Fig. 9. Mutual information without key disagreement correction process whose func-
tion is distance between UT and EV

Method 3. BCH(31,21,5) with table-aided soft-decision decoding.
Method 4. BCH(31,16,7) with table-aided soft-decision decoding.

The aided table for decoding is pre-shared by all terminals.

Comparison of Mutual Information between AP and UT . Table 2 shows
the mutual information between AP and UT . This value is the first term in Eq.
(1). Five methods, one of which is the case of whthout a key disagreement cor-
rection process and another is described as the method of the key disagreement
correction process in the previous subsection, are shown in this table. In addi-
tion, they divided by arranging EV . Case 1 is all the points in this experiment,
case 2 is the points whose EV is located within 40 cm from UT , and case 3 is
the other points.

Comparative Studies in Key Disagreement Correction Process 185

Table 2. Comparison of Mutual Information between AP and UT

no error Coding Coding Coding Coding
correction Method 1 Method 2 Method 3 Method 4

Case 1 0.9854 0.9915 0.9921 0.9920 0.9923
141 points (—) (0.0061) (0.0069) (0.0066) (0.0069)

Case 2 0.9857 0.9927 0.9938 0.9935 0.9939
89 points (—) (0.0070) (0.0081) (0.0078) (0.0082)

Case 3 0.9848 0.9894 0.9893 0.9895 0.9896
52 points (—) (0.0045) (0.0045) (0.0047) (0.0047)

(bit/round)

Table 3. Comparison of Mutual Information between EV and UT

no error Coding Coding Coding Coding
correction Method 1 Method 2 Method 3 Method 4

Case 1 0.2729 0.2518 0.2719 0.2486 0.2645
141 points (—) (-0.0211) (-0.0010) (-0.0243) (-0.0084)

Case 2 0.3788 0.3535 0.3836 0.3556 0.3866
89 points (—) (-0.0253) (0.0048) (-0.0232) (0.0078)

Case 3 0.0917 0.0776 0.0808 0.0655 0.0555
52 points (—) (-0.0141) (-0.0109) (-0.0262) (-0.0362)

(bit/round)

This table means that the key disagreement correction process is effective
for mutual information between AP and UT for all methods regardless of the
distance between EV and UT .

Comparison of Mutual Information between EV and UT . Table 3 shows
the mutual information between EV and UT . This value is the second term in
Eq. (1). When EV is located near UT , methods 1 and 3 are more effective
for the mutual information between EV and UT than methods 2 or 4 because
the possibility that the RSSI profile of EV is similar to UT ’s profile increases
when the distance of each node is short. Moreover, a different feature is found in
which method 4 is the most effective in case 3. Miscorrection occurs in the key
disagreement correction process based on the syndrome received by EV because
the RSSI profile of EV is different from that of UT in case 3.

Comparison of Conditional Mutual Information. Table 4 shows the condi-
tional mutual information defined in Eq.(1). In this result, we clarified the effec-
tiveness of the key disagreement correction process based on the error-correcting
codes. Conditional mutual information has only increased 0.04 bit or less using
this process. In fact, the best way is to adopt BCH(31,16,7) with table-aided
soft-decision decoding as the key disagreement correction process when there is
one EV more than 40 cm from UT . To share a 128-bit unguessable key against

186 T. Hashimoto et al.

Table 4. Comparison of Conditional Mutual Information

no error Coding Coding Coding Coding
correction Method 1 Method 2 Method 3 Method 4

Case 1 0.7125 0.7397 0.7202 0.7434 0.7278
141 points (—) (0.0273) (0.0077) (0.0309) (0.0154)

Case 2 0.6069 0.6392 0.6101 0.6378 0.6073
89 points (—) (0.0323) (0.0033) (0.0310) (0.0004)

Case 3 0.8932 0.9118 0.9085 0.9241 0.9341
52 points (—) (0.0186) (0.0154) (0.0309) (0.0409)

(bit/round)

an eavesdropper in this procedure with the key disagreement correction process,
we should transact 200 wireless packets between the nodes.

5 Conclusion

As a result of experiments and computer simulation, we clarified the following:

– The system that has no key disagreement correction process exhibits condi-
tional mutual information 0.6 or higher when there is one EV more than 40
cm from UT .

– In this case, to share a 128-bit unguessable key against an eavesdropper, we
should transact 214 wireless packets between the nodes.

– The key disagreement correction process based on error-correcting code con-
tributes to the improvement not only of the mutual information between AP
and UT but also the mutual information between EV and UT .

– The best way is to adopt BCH(31,16,7) with table-aided soft-decision decod-
ing as the key disagreement correction process under the same conditions.

– After this improvement, to share a 128-bit unguessable key against an eaves-
dropper, we should transact 200 wireless packets between nodes.

References

1. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Trans. Informa-
tion Theory 22(6), 644–654 (1976)

2. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signa-
tures and Public-key Cryptosystems. Communications of the ACM 21, 120–126
(1978)

3. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution
and Coin Tossing. In: Proc. IEEE Int. Conf. Com. Sys. and Signal Processing,
Bangalore, India (December 1984)

4. Maurer, U.: Secret Key Agreement by Public Discussion from Common Informa-
tion. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

5. Maurer, U.: Information-Theoretically Secure Secret-Key Agreement by NOT Au-
thenticated Public Discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 209–225. Springer, Heidelberg (1997)

Comparative Studies in Key Disagreement Correction Process 187

6. Hershey, J.E., Hassan, A.A., Yarlagadda, R.: Unconventional Cryptographic
Keying Variable Management. IEEE Trans. Commun. 43, 3–6 (1995)

7. Aono, T., Higuchi, K., Ohira, T., Komiyama, B., Sasaoka, H.: Wireless Secret Key
Generation Exploiting Reactance-domain Scalar Response of Multipath Fading
Channels. IEEE Trans. Antennas Propag. 53(11), 3776–3784 (2005)

8. Ohira, T., Cheng, J.: Analog smart antennas, Adaptive Antenna Arrays, pp. 184–
204. Springer, Heidelberg (2004)

9. Imai, H., Kobara, K., Morozov, K.: On the Possibility of Key Agreement Using
Variable Directional Antenna. In: JWIS 2006. The 1st Joint Workshop on Infor-
mation Security 2006, Seoul, Korea, pp. 153–167 (September 2006)

10. http://focus.ti.com/docs/prod/folders/print/cc2420.html

11. http://www.zigbee.org/

http://focus.ti.com/docs/prod/folders/print/cc2420.html
http://www.zigbee.org/

Breaking 104 Bit WEP in Less Than 60 Seconds

Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin�

TU Darmstadt, FB Informatik
Hochschulstrasse 10, 64289 Darmstadt, Germany

{e tews,weinmann,pyshkin}@cdc.informatik.tu-darmstadt.de

Abstract. We demonstrate an active attack on the WEP protocol that
is able to recover a 104-bit WEP key using less than 40,000 frames with a
success probability of 50%. In order to succeed in 95% of all cases, 85,000
packets are needed. The IV of these packets can be randomly chosen. This
is an improvement in the number of required frames by more than an
order of magnitude over the best known key-recovery attacks for WEP.
On a IEEE 802.11g network, the number of frames required can be ob-
tained by re-injection in less than a minute. The required computational
effort is approximately 220 RC4 key setups, which on current desktop
and laptop CPUs is negligible.

1 Introduction

Wired Equivalent Privacy (WEP) is a protocol for encrypting wirelessly trans-
mitted packets on IEEE 802.11 networks. In a WEP protected network, all pack-
ets are encrypted using the stream cipher RC4 under a common key, the root
key1 Rk. The root key is shared by all radio stations. A successful recovery of this
key gives an attacker full access to the network. Although known to be insecure
and superseded by Wi-Fi Protected Access (WPA) [18], this protocol is still is
in widespread use almost 6 years after practical key recovery attacks were found
against it [5,15]. In this paper we present a new key-recovery attack against
WEP that outperforms previous methods by at least an order of magnitude.

First of all we describe how packets are encrypted: For each packet, a 24-bit
initialization vector (IV) IV is chosen. The IV concatenated with the root key
yields the per packet key K = IV||Rk. Over the data to be encrypted, an Integrity
Check Value (ICV) is calculated as a CRC32 checksum. The key K is then used
to encrypt the data followed by the ICV using the RC4 stream cipher. The IV
is transmitted in the header of the packet. Figure 1 shows a simplified version
of an 802.11 frame.

A first analysis of the design failures of the WEP protocol was published
by Borisov, Goldberg and Wagner [2] in 2001. Notably, they showed that the
ICV merely protects against random errors but not against malicious attackers.
Furthermore, they observed that old IV values could be reused, thus allowing
� Supported by a stipend of the Marga und Kurt-Möllgaard-Stiftung.
1 The standard actually allows for up to four different root keys; in practice however,

only a single root key is used.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 188–202, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Breaking 104 Bit WEP in Less Than 60 Seconds 189

Fig. 1. A 802.11 frame encrypted using WEP

to inject messages. In the same year, Fluhrer, Mantin and Shamir presented a
related-key ciphertext-only attack against RC4 [5]. In order for this attack to
work, the IVs need to fulfill a so-called “resolved condition”. This attack was
suspected to be applicable to WEP, which was later demonstrated by Stubble-
field et al [15]. Approximately 4 million different frames need to be captured to
mount this attack. Vendors reacted to this attack by filtering IVs fulfilling the
resolved condition, so-called “weak IVs”. This countermeasure however proved
to be insufficient: In 2004, a person using the pseudonym KoreK posted a family
of statistical attacks against WEP that does not need weak IVs [9,3]; moreover
the number of frames needed for key-recovery was reduced to about 500,000
packets.

More recently, Klein [7] showed an improved way of attacking RC4 using
related keys that does not need the “resolved condition” on the IVs and gets by
with a significantly reduced number of frames.

Table 1 shows a statistic of employed encryption methods in a sample of 490
networks, found somewhere in the middle of Germany in March 2007. Another
survey of more than 15.000 networks was performed in a larger German city
in September 2006 [4]. Both data sets demonstrate that WEP still is a popular
method for securing wireless networks. Similar observations have been made
by Bittau, Handley and Lackey [1]. Their article also give an excellent history
of WEP attacks and describes a real-time decryption attack based on packet
fragmentation that does not recover the key.

The structure of the paper is as follows: In Section 2 we introduce the nota-
tion that is used throughout the rest of this paper, in Section 3.1 we present a
summary of Klein’s attack on RC4, in Section 4 we specialize Klein’s Attack to
WEP, Section 5 describes how sufficient amounts of key stream can be obtained
for the attack, Section 6 describes extensions of the attack such as key ranking
techniques in detail and Section 7 gives experimental results.

2 Notation

For arrays or vectors we use the [·] notation, as used in many programing lan-
guages like in C or Java. All indices start at 0. For a permutation P denote the
inverse permutation by P−1; meaning P[i] = j ⇔ P−1[j] = i. We will use x ≈n y
as a short form for x ≈ y mod n.

190 E. Tews, R.-P. Weinmann, and A. Pyshkin

Table 1. Methods used for securing wireless networks

Time No Encryption WEP WPA1/2

March 2007 21.8% 46.3% 31.9%
Middle of 2006 23.3% 59.4% 17.3%

Rk is the WEP or root key and IV is the initialization vector for a packet.
K = Rk||IV is the session or per packet key. X is a key stream generated using
K. We will refer to a key stream X with the corresponding initialization vector
IV as a session.

3 The Stream Cipher RC4

RC4 is a widely used stream cipher that was invented by Ron Rivest in 1987. It
was a trade secret of RSA Security until 1994 when the algorithm was published
anonymously on the Internet. RC4’s internal state consists of a 256-byte array S
defining a permutation as well as two integers 0 ≤ i, j ≤ 255 acting as pointers
into the array.

The RC4 key setup initializes the internal state using a key K of up to 256 bytes.
By exchanging two elements of the state in each step, it incrementally transforms
the identity permutation into a “random” permutation. The quality of random-
ness of the permutation after the key setup will be analyzed in Section 3.1.

The RC4 key stream generation algorithm updates the RC4 internal state and
generates one byte of key stream. The key stream is XORed to the plaintext to
generate the ciphertext.

Listing 1.1. RC4 key setup

1 for i ← 0 to 255 do
2 S[i] ← i
3 end
4 j ← 0
5 for i ← 0 to 255 do
6 j ← j+S[i]+K[i mod len(K)] mod 256
7 swap(S, i , j)
8 end
9 i ← 0

10 j ← 0

Listing 1.2. RC4 key stream generation

1 i ← i + 1 mod 256
2 j ← j + S[i] mod 256
3 swap(S, i , j)
4 return S[S[i] + S[j] mod 256]

We have a closer look at the RC4 key setup algorithm described in listing 1.1,
especially at the values for S, i and j. After line 4, S is the identity permutation

Breaking 104 Bit WEP in Less Than 60 Seconds 191

and j has the value 0. We will use Sk and jk for the values of S and j after k
iterations of the loop starting in line 5 have been completed. For example, if the
key CA FE BA BE is used, S0 is the identity permutation and j0 = 0. After the
first key byte has been processed, j1 = 202 and S1[0] = 202, S1[202] = 0, and
S1[x] = S0[x] = x for 0 �= x �= 202. For the rest of this paper, let n = 256. It
is possible to generalize our results for modified versions of the RC4 algorithm,
but we will only focus on the original algorithm as printed in listing 1.1 and 1.2.

3.1 Klein’s Attack on RC4

Suppose w key streams were generated by RC4 using packet keys with a fixed
root key and different initialization vectors. Denote by Ku =(Ku[0], . . . ,Ku[m]) =
(IVu‖Rk) the u-th packet key and by Xu = (Xu[0], . . . ,Xu[m − 1]) the first m
bytes of the uth key stream, where 1 ≤ u ≤ w. Assume that an attacker knows
the pairs (IVu,Xu) – we shall refer to them as samples – and tries to find Rk.

In [7], Klein showed that there is a map Fi : (Z/nZ)i → Z/nZ with 1 ≤ i ≤ m
such that

Fi(K[0], . . . ,K[i− 1],X[i− 1]) =

{

K[i], with Prob ≈ 1.36
n

a �= K[i], with Prob < 1
n for all a

So Fi can be seen as a kind of approximation for K[i], and we can write
Fi ≈n K[i]. If the first i bytes of a packet key are known, then the internal
permutation Si and the index j at the ith step of the RC4 key setup algorithm
can be found. We have

Fi(K[0], . . . ,K[i− 1],X[i− 1]) = S−1
i [i− X[i− 1]]− (ji + Si[i]) mod n

The attack is based on the following properties of permutations.

Theorem 1. For a random number j ∈ {0, . . . , n− 1} and a random permuta-
tion P, we have

Prob(P[j] + P[P[i] + P[j] mod n] ≡ i mod n) =
2
n

Prob(P[j] + P[P[i] + P[j] mod n] ≡ c mod n) =
n− 2

n(n− 1)

where i, c ∈ {0, . . . , n− 1} are fixed, and c �= i.

Proof. see [7].

In the case of n = 256, the first probability is equal to 2−7 ≈ 0.00781, and the
second one is approximately equal to 0.00389.

From Theorem 1 it follows that for RC4 there is a correlation between i,
Si+n[Si+n[i] + Si+n[j] mod n], and Si+n[j] = Si+n−1[i].

Next, the equality Si+1[i] = Si+n−1[i] holds with high probability. The theo-
retical explanation of this is the following. If we replace the line 6 of the RC4 key
setup, and the line 2 of the RC4 key stream generator by j ← RND(n), 2 then
2 Some publications approximate

(

1− 1
n

)n−2
by 1

e
. We will use

(

1− 1
n

)n−2
for the

rest of this paper.

192 E. Tews, R.-P. Weinmann, and A. Pyshkin

Prob(Si+1[i] = Si+n−1[i]) =
(

1− 1
n

)n−2

≈ e−1

Moreover, we have Si+1[i] = Si[ji+1] = Si[ji + Si[i] + K[i] mod n].
Combining this with Theorem 1, we get the probability that

K[i] = S−1
i [i− Si+n[Si+n[i] + Si+n[j] mod n] mod n]− (ji + Si[i])

is approximately
(

1− 1
n

)n−2 2
n

+

(

1−
(

1− 1
n

)n−2
)

n− 2
n(n− 1)

≈ 1.36
n

4 Extension to Multiple Key Bytes

With Klein’s attack, it is possible to iteratively compute all secret key bytes,
if enough samples are available. This iterative approach has a significant disad-
vantage: In this case the key streams and IVs need to be saved and processed
for every key byte. Additionally correcting falsely guessed key byte is expensive,
because the computations for all key bytes following K[i] needs to be repeated if
K[i] was incorrect.

We extend the attack such that is it possible to compute key bytes indepen-
dently of each other and thus make efficient use of the attack possible by using
key ranking techniques. Klein’s attack is based on the the fact that

K[i] ≈n S−1
i [i− X[i− 1]]− (Si[i] + ji) (1)

K[i+ 1] ≈n S−1
i+1[(i+ 1)− X[(i+ 1)− 1]]− (Si+1[i+ 1] + ji+1) (2)

We may write ji+1 as ji + Si[i] + K[i]. By replacing ji+1 in equation 2, we get
an approximation for K[i] + K[i+ 1]:

K[i] + K[i+ 1] ≈n S−1
i+1[(i+ 1)− X[(i+ 1)− 1]]− (Si+1[i+ 1] + ji + Si[i]) (3)

By repeatedly replacing ji+k, we get an approximation for
∑i+k

l=i K[l]. Because
we are mostly interested in

∑3+i
l=3 K[l] =

∑i
l=0 Rk[l] in a WEP scenario, we will

use the symbol σi for this sum.

σi ≈n S−1
3+i[(3 + i)− X[2 + i]]−

(

j3 +
i+3
∑

l=3

Sl[l]

)

= Ãi (4)

The right side of equation 4 still depends on the key bytes K[3] to K[i − 1],
because they are needed to compute Sl and S−1

3+i. By replacing them with S3, we
get another approximation Ai for σi, which only depends on K[0] to K[2].

σi ≈n S−1
3 [(3 + i)− X[2 + i]]−

(

j3 +
i+3
∑

l=3

S3[l]

)

= Ai (5)

Breaking 104 Bit WEP in Less Than 60 Seconds 193

Under idealized conditions, Klein derives the following probability for the
event Ãi = σi:

Prob
(

σi = Ãi

)

≈
(

1− 1
n

)n−2

· 2
n

+

(

1−
(

1− 1
n

)n−2
)

· n− 2
n(n− 1)

(6)

The first part of sum represents the probability that S[i+3] remains unchanged
until X[2+ i] is generated, the second part represents the probability that S[i+3]
is changed during key scheduling or key stream generation with Ai still taking
the correct value. By replacing Sl and Si+3 with their previous values, we have
reduced that probability slightly.

Sk+3[k + 3] differs from S3[k + 3] only if one of the values of j3 to jk+2 has
been k + 3. All values of Sl[l] will be correct, if for all jz with 3 ≤ z ≤ 3 + i the
condition jz /∈ {z, . . . , 3 + i} holds. Assuming j changes randomly, this happens
with probability

∏i
k=1

(

1− k
n

)

. Additionally S3+i[ji+3] should not be changed
between iteration 3 and 3+ i. This is true if j does not take the value of ji+3 in a
previous round, which happens with probability ≈ (

1− 1
n

)i and i does not take
the value of ji+3, which happens with probability ≈ (

1− i
n

)

. To summarize,
the probability that replacing all occurrences of S in Ãi with S3 did not change
anything is:

qi =
(

1− 1
n

)i

·
(

1− i

n

)

·
i

∏

k=1

(

1− k

n

)

(7)

This results in the following probability pcorrecti being a lower bound for Ai

taking the correct value for σi.

Prob (σi = Ai) ≈ qi ·
(

1− 1
n

)n−2

· 2
n

+

(

1− qi ·
(

1− 1
n

)n−2
)

· n− 2
n(n− 1)

(8)

Experimental results using more than 50,000,000,000 simulations with 104
bit WEP keys show that this approximations differs less than 0.2% from values
determined from these simulations.

5 Obtaining Sufficient Amounts of Key Stream

The Internet Protocol (IP) is the most widely deployed network protocol. For
our attack to work, we assume that version 4 (IPv4) of this protocol is used on
the wireless networks we attack.

If host A wants to send an IP datagram to host B, A needs the physical
address of host B or the gateway through which B can be reached. To resolve
IP addresses of hosts to their physical address, the Address Resolution Protocol
(ARP) [13] is used. This works as follows: Host A sends an ARP request to the
link layer broadcast address. This request announces that A is looking for the
physical address of host B. Host B responds with an ARP reply containing his

194 E. Tews, R.-P. Weinmann, and A. Pyshkin

Fig. 2. Cleartext of ARP request and response packets

own physical address to host A. Since the Address Resolution Protocol is a link
layer protocol it is typically not restricted by any kind of packet filters or rate
limiting rules.

ARP requests and ARP replies are of fixed size. Because the size of a packet is
not masked by WEP, they can usually be easily distinguished from other traffic.
The first 16 bytes of cleartext of an ARP packet are made up of a 8 byte long
802.11 Logical Link Control (LLC) header followed by the first 8 bytes of the
ARP packet itself. The LLC header is fixed for every ARP packet (AA AA 03 00
00 00 08 06). The first 8 bytes of an ARP request are also fixed. Their value
is 00 01 08 00 06 04 00 01. For an ARP response, the last byte changes to
02, the rest of the bytes are identical to an ARP request. An ARP request is
always sent to the broadcast address, while an ARP response is sent to a unicast
address. Because the physical addresses are not encrypted by WEP, it is easy to
distinguish between an encrypted ARP request and response.

By XORing a captured ARP packet with these fixed patterns, we can recover
the first 16 bytes of the key stream. The corresponding IV is transmitted in clear
with the packet.

To speed up key stream recovery, it is possible to re-inject a captured ARP
request into the network, which will trigger another reply. The destination an-
swers the request with a new response packet that we can add to our list of key
streams. If the initiator and the destination of the original request have been
both wireless stations, every re-injected packet will generate three new pack-
ets, because the transmission will be relayed by the access point. Because ARP
replies expire quickly, it usually takes only a few seconds or minutes until an
attacker can capture an ARP request and start re-injecting it. The first pub-
lic implementation of a practical re-injection attack was in the BSD-Airtools
package [6].

It is even possible to speed up the time it takes to capture the first ARP
request. A de-authenticate message can be sent to a client in the network, telling
him that he has lost contact with the base station. In some configurations we saw
clients rejoining the network automatically and at the same time flushing their
ARP cache. The next IP packet sent by this client will cause an ARP request to
look up the Ethernet address of the destination.

Breaking 104 Bit WEP in Less Than 60 Seconds 195

6 Our Attack on WEP

The basic attack is straightforward. We use the methods described in Section 5
to generate a sufficient amount of key stream under different IVs. Initially we
assume that a 104 bit WEP key was used. For every σi from σ0 to σ12, and every
recovered key stream, we calculate Ai as described in equation 5 and call the
result a vote for σi having the value Ai. We keep track of those votes in separate
tables for each σi.

Having processed all available key streams, we assume that the correct value
for every σi is the one with the most votes received. The correct key is simply
Rk[0] = σ0 for the first key byte and Rk[i] = σi − σi−1 for all other key bytes. If
the correct key was a 40 bit key instead of a 104 bit key, the correct key is just
calculated from σ0 to σ4.

6.1 Key Ranking

If only a low number of samples is available, the correct value for σi is not always
the most voted one in the table, but tends to be one of the most voted. Figure 3
contains an example in which the correct value has the second most votes after
35.000 sessions. Instead of collecting more samples, we use another method for
finding the correct key. Checking if a key is the correct key is simple, because
we have collected a lot of key streams with their corresponding IV. We can just
generate a key stream using an IV and a guessed key, and compare it with the
collected one. If the method used for key stream recovery did not always guess
the key stream right, the correct value just needs to match a certain fraction of
some key streams.

For every key byte K[i], we define a set Mi of possible values σi might have.
At the beginning, Mi is only initialized with the top voted value for σi from the
table. Until the correct key is found, we look for an entry σ̃i /∈ Mi in all tables
having a minimum distance to the top voted entry in table i. We then add σ̃i to
Mi and test all keys which can now be constructed from the sets M that have
not been tested previously.

6.2 Handling Strong Keys

For equation 5 we assumed S3 to be an approximation of S3+i. This assumption
is wrong for a fraction of the key space. We call these keys strong keys. For these
keys, the value for ji+3 with high probability is taken by j in a iteration before
i+ 3 and after 3. This results in S[ji+3] being swapped with an unknown value,
depending on the previous key bytes and the IV. In iteration i + 3, this value
instead of S3[ji+3] is now swapped with S[i].

More formally, let Rk be a key and Rk[i] a key byte of Rk. Rk[i] is a strong key
byte, if there is an integer l ∈ {1, . . . , i} where

i
∑

k=l

(Rk[k] + 3 + k) ≡n 0 (9)

196 E. Tews, R.-P. Weinmann, and A. Pyshkin

Fig. 3. Distribution of votes for a strong and a normal key byte

A key Rk is a strong key, if at least one of its key bytes is a strong key byte. On
the contrary, key bytes that are not strong key bytes are called normal key bytes
and keys in which not a single strong key byte occurs are called normal keys.

Assuming that S is still the identity permutation, the value 0 will be added
to jl+3 from iteration l+ 3 to i+ 3, making ji+3 taking his previous value jl+3.
This results in the value qi of equation 7 being close to 0 and Prob(σi = Ai) is
very close to 1

n .
Figure 3 shows the distribution of votes for a strong and a non strong key

byte after 35.000 and 300.000 samples. It is easy to see that the correct value for
strong key byte has not received the most votes of all key bytes any longer. An
alternative way must be used to determine the correct value for this key byte.
Our approach can be divided into two steps:

1. Find out which key bytes are strong key bytes:
If a key byte Rk[i] is a normal key byte, the correct value for σi should
appear with probability ≈ pcorrecti (see equation 8). We assume that all

other values are equidistributed with probability pwrongi
= (1−pcorrecti)

n−1 . If
Rk[i] is a strong key byte we assume that all values are equidistributed with
probability pequal = 1

n .
Let Nib

the fraction of votes for which σi = b holds. We calculate

errstrongi
=

n
∑

j=0

(

Nij − pequal

)2 (10)

errnormali =
(

max
b

(Nib
)− pcorrecti

)2

+

n
∑

j=0,j �=argmaxb(Nib)

(

Nij − pwrongi

)2 (11)

Breaking 104 Bit WEP in Less Than 60 Seconds 197

If enough samples are available, this can be used as a test if errstrongi
is

smaller than errnormali . If that is the case, it is highly likely that key byte
Rk[i] is a strong key byte. If only a small number of samples are available,
errstrongi

− errnormali can be used as an indicator for the likelihood of key
byte Rk[i] being a strong key byte.

2. Find the correct values for these key bytes:
Assuming that Rk[i] is a strong key byte and all values for Rk[0] . . .Rk[i− 1]
are known, we can use equation 9 and get the following equation for Rk[i]:

Rk[i] ≡n −3− i−
i−1
∑

j=l

(Rk[j] + 3 + j) (12)

Because there at most i possible values for l, we can try every possible value
for l and restrict Rk[i] to at most i possible values (12 if Rk[i] is the last key
byte for a 104 bit key). This method can be combined with the key ranking
method as described in Section 6.1. Instead of taking possible values for σi

from the top voted value in the table for key byte i, we ignore the table
and use the values calculated with equation 12 for Rk[i] and assume that
σi−1 +Rk[i] was top voted in the table. Possible values for σi for all assumed
to be normal key bytes are still taken from the top voted values in their
tables.

This approach is only feasible if the number of strong bytes in the key is small.
For a 104 bit key all 12 key bytes can be strong key bytes. For such a key, we
need to test up to 12! ≈ 228.8 different keys, which is possible, but slows down
our attack. Because Klein’s attack as described in Section 3.1 is not hindered
by strong keys, we suggest to additionally implement this attack without key
ranking, to be able to attack even keys with the maximum number of strong key
bytes in a reasonable time.

6.3 A Passive Version

For the attack in the previous section we assumed that an attacker obtains a
sufficient amount of encrypted ARP packets by actively injecting ARP requests
into the network. This attack strategy however might be detected by an intrusion
detecting system (IDS). In this section we present a passive version of the attack.

As we have seen, an ARP packet can be detected by its destination address
and size. For our attack we will assume every packet which is not an ARP packet
to be an IPv4 packet. This is expected to be true with a high probability for most
networks in use today. Figure 4 shows the first 15 bytes of an IPv4 packet [14].

There are three fields in the first 7 bytes of the the IPv4 header which do not
contain fixed values. These are:

Total Length. This is the total length of the packet, starting from the IPv4
header. We can calculate this value from the length of the 802.11 frame,
which can be observed.

198 E. Tews, R.-P. Weinmann, and A. Pyshkin

Fig. 4. First 15 bytes of a 802.11 frame containing an IPv4 packet

Identification. This field is used to keep track of packets for the reassembly of
fragments and must be assumed to be random.

Flags and Fragment Offset. This byte contains the most significant bits of
the fragment offset and two control flags. Because IPv4 packets are usually
short, the most significant bits of the fragment offset can be assumed to be
zero, even if the packet was fragmented. After having analyzed traffic from
various sources, we found that about 85% of all packets were sent with the
don’t fragment flag set and about 15% had all flags cleared.

In total, this means that we cannot guess two bytes at all, and one byte can
be restricted to two possible values with high probability.

We can now modify our attack as follows. The values for σ10 and σ11 are
not determined by statistical tests, because we cannot recover X[12] and X[13].
Instead, we just iterate over all 216 possible values when it comes to determine
these values. To prevent a slowdown of our attack by a factor of 216, we do less
key ranking.

To determine the value of σ12, we now introduce the concept of a “weighted
vote”. Until now, we counted the output of the functionAi as a vote for σi having
a specific value. We now calculate A12 two times, once under the assumption
that X[12] = 64 (which is equivalent to don’t fragment flag set), and count it
as a 220

256 vote for σ12, and once with the assumption that X[12] = 0 (which is
equivalent to no flags set), and count it as a 36

256 vote for σ12.
Of course, the exact success rate of this passive attack heavily depends on the

nature of the traffic captured, but some simulations have shown that it works
with reasonable reliability and just needs some more captured packets than the
active version just using ARP packets. Most of the work on the passive attack
has been done by Martin Beck who also integrated our attack in the aircrack-ng
toolsuite [16].

6.4 Breaking Implementations Using Larger WEP Keys

Some vendors implemented WEP using root keys longer than 104 bit. We have
seen implementations using up to 232 bit key length for the root key. Attacking
such networks is not as easy as attacking a 104 bit key, because only the first
16 bytes of cleartext of an ARP packet are known, but 31 bytes of the cleartext
would be needed. The missing 15 bytes are constant for every request or response,
if only a single ARP packet was used for injection.

Using the chopchop attack invented by KoreK [8] or the fragmentation attack
published by Bittau, Handley and Lackey [1] allows us do decrypt the request

Breaking 104 Bit WEP in Less Than 60 Seconds 199

packet we used and one of the response packets. The decrypted packets can
then be used for the ARP injection attack. Because ARP responses contain
packet-unique values, we can assume that all other responses contain exactly
the same plaintext. This allows us to recover enough plaintext for breaking even
implementations with root keys longer than 232 bit.

7 Experimental Results

We wrote an implementation using the parallelized computation as described
in Section 4 and the key ranking methods described in Section 6.1 and 6.2. At
the beginning an upper bound on the number of keys to be tested is fixed (key
limit). A limit of 1,000,000 keys seems a reasonable choice for a modern PC or
laptop. Three different scenarios of attacks cover the most likely keys:

scenario 1 tests 70% of the limit and uses key ranking as described in Section
6.1. As long as the set of possible keys does not exceed 70% of the key limit,
a new value v /∈ Mi is added to a set Mi. The value v is chosen to have
minimal distance to the top voted entry.

scenario 2 tests 20% of the limit and uses the key ranking method in combina-
tion with strong byte detection. We use the difference errstrongi

− errnormali

to determine which key byte is the most likely to be strong. We then use
equation 12 to get possible values for this key byte. As long as the number
of possible keys does not exceed 20% of the key limit all other key bytes are
determined as in scenario 1.

scenario 3 tests 10% of the limit and works like scenario 2, with the exception
that 2 key bytes are assumed to be strong.

To verify a possible key Rk for correctness, 10 sessions (IVi, Xi) are chosen at
random. If the key stream generated using IVi||Rk is identical to Xi in the first
6 bytes for all sessions, we assume the key to be correct. If all three scenarios
where unsuccessful, the attack is retried using just 10% of the key limit, this
time under the assumption that the root key is a 40 bit key instead of a 104 bit
one.

Figure 5 shows the result from a simulation, showing that a 50% success rate
is possible using just 40,000 packets.

To test whether this attack works in a real world scenario we used the aircrack-
ng tool suite [16]. aircrack-ng contains aireplay-ng, a tool which is able to capture
and replay 802.11 frames; for example, frames containing ARP requests or other
kinds of packets that cause traffic on the target network. Additionally, airodump-
ng can be used to capture and save the generated traffic including all needed
IEEE 802.11 headers.

On a mixed IEEE 802.11 b/g network, consisting of cards with chipsets from
Atheros, Broadcom, Intersil and Intel, we achieved a rate of 764 different cap-
tured packets per second, using aireplay-ng and a network card with a PrismGT
chipset for injecting and an Atheros based card for capturing. This number might
vary, depending on the chipsets and the quality of the signal. This allowed us to

200 E. Tews, R.-P. Weinmann, and A. Pyshkin

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 85000

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

number of keystreams collected

keylimit 1,000,000
5% randomized keylimit 1,000,000

keylimit 5,000
linux iv keylimit 1,000,000

Fig. 5. Success rate

recover 40,492 key streams in 53 seconds. Additional 2 seconds can be added for
deauthenticating one or all clients forcing them to send out new ARP requests.
The final cryptographic computation requires 1 to 3 seconds of CPU-time, de-
pending on the CPU being used. For a 104 bit key we were able to consistently
and successfully recover keys from a packet capture in less than 3 seconds on a
Thinkpad T41p (1.7 GHz Pentium-M CPU) – this includes reading and parsing
the dump file, recovering key streams and performing the actual attack. On more
recent multi-core CPUs we expect this figure can be brought down to less than
a second with a parallelized key space search. This results in 54 to 58 seconds
to crack a 104 bit WEP key, with probability 50%.

Main memory requirements for an efficient implementation are quite low. Our
implementation needs less than 3 MB of main memory for data structures. Most
of the memory is consumed by a bit field for finding duplicate IVs, this is 2
MB in size. CPU-time scales almost linearly with the number of keys tested. By
reducing the number of keys tested to 5,000, this attack is suitable for PDA or
embedded system usage too, by only reducing its success probability a little bit.
The success rate with this reduced key limit is included in Figure 5 with label
keylimit 5,000.

7.1 Robustness of the Attack

The key stream recovery method we used might not always be correct. For ex-
ample, any kind of short packet (TCP, UDP, ICMP) might be identified as an
ARP reply resulting in an incorrect key stream. To find out how our attack
performs with some incorrect values in key streams, we ran a simulation with
5% of all key streams replaced with random values. The result is included in
Figure 5, labeled ”5% randomized key limit 1,000,000”. Depending on the num-
ber of packets collected, the success rate is slightly reduced by less than 10%. If
enough packets are available, there is no visible difference.

In all previous simulations, we assumed that IVs are generated independently,
using any kind of pseudo random function. Some drivers in fact do use an PRNG
to generate the IV value for each packet, however others use a counter with some
modifications. For example the 802.11 stack in the Linux 2.6.20 kernel uses an

Breaking 104 Bit WEP in Less Than 60 Seconds 201

counter, which additionally skips IVs which where used for an earlier attack
on RC4 by Fuller, Mantin and Shamir which became known as FMS-weak-IVs.
Using this modified IV generation scheme, the success rate of our attack (label
linux iv keylimit 1,000,000) was slightly reduced by less than 5%, depending on
the number of packets available. As before, there are no noticeable differences,
if a high number of packets are available.

8 Related and Further Work

After we made a draft of this paper available on the IACR’s Cryptology ePrint
Archive in early April 2007, other researchers published similar analyses. Sub-
hamoy Maitra and Goutam Paul gave an independent analysis [10] of Klein’s
attack with results similar to our multiple key bytes extension. Additionally,
they found new correlations in RC4 independent of Klein’s analysis.

Vaudenay and Vuagnoux presented a similar attack at SAC2007 [17], which ad-
ditionallymakes use of the fact that theRC4key is stretched to 256 bytes by repeat-
ing it. The same trick was discoveredby Ohigashi,Ozasa, Fujikawa, Kuwadakoand
Morii [12], who developed an improved version of our attack. Vaudenay and Vuag-
noux additionally make use of a modified FMS attack, to improve their results. Still
ongoing research of Ohigashi, Ozasa, Fujikawa, Kuwadako and Morii is expected
to halve the number of packets needed for similar success rates as ours [11].

9 Conclusion

We have extended Klein’s attack on RC4 and have applied it to the WEP proto-
col. Our extension consists in showing how to determine key bytes independently
of each other and allows us to dramatically decrease the time complexity of a
brute force attack on the remaining key bytes. We have carefully analyzed cases
in which a straightforward extension of Klein’s attack will fail and have shown
how to deal with these situations.

The number of packets needed for our attack is so low that opportunistic
attacks on this security protocol will be most probable. Although it has been
known to be insecure and has been broken by a key-recovery attack for almost
6 years, WEP is still seeing widespread use at the time of writing this paper.
While arguably still providing a weak deterrent against casual attackers in the
past, the attack presented in this paper greatly improves the ease with which
the security measure can be broken and will likely define a watershed moment
in the arena of practical attacks on wireless networks.

References

1. Bittau, A., Handley, M., Lackey, J.: The final nail in WEP’s coffin. In: IEEE
Symposium on Security and Privacy, pp. 386–400. IEEE Computer Society Press,
Los Alamitos (2006)

2. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: the inse-
curity of 802.11. In:ACM MobiCom 2001, pp. 180–189. ACM Press, New York (2001)

202 E. Tews, R.-P. Weinmann, and A. Pyshkin

3. Chaabouni, R.: Break WEP faster with statistical analysis. Technical report,
EPFL, LASEC (June 2006),
http://lasecwww.epfl.ch/pub/lasec/doc/cha06.pdf

4. Dörhöfer, S.: Empirische Untersuchungen zur WLAN-Sicherheit mittels Wardriv-
ing. Diplomarbeit, RWTH Aachen (September 2006) (in German)

5. Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm
of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
1–24. Springer, Heidelberg (2001)

6. Hulton, D. (h1kari).: bsd-airtools,
http://www.dachb0den.com/projects/bsd-airtools.html

7. Klein, A.: Attacks on the RC4 stream cipher. Designs, Codes and Cryptography
(submitted, 2007)

8. KoreK. chopchop (experimental WEP attacks) (2004),
http://www.netstumbler.org/showthread.php?t=12489

9. KoreK. Next generation of WEP attacks (2004),
http://www.netstumbler.org/showpost.php?p=93942&postcount=35

10. Maitra, S., Paul, G.: Many keystream bytes of RC4 leak secret key information.
Cryptology ePrint Archive, Report2007/261(2007), http://eprint.iacr.org/

11. Ohigashi, T., Kuwakado, H., Morii, M.: A key recovery attack on WEP with less
packets (2007)

12. Ozasa, Y., Fujikawa, Y., Ohigashi, T., Kuwakado, H., Morii, M.: A study on the
Tews, Weinmann, Pyshkin attack against WEP. In: IEICE Tech. Rep., Hokkaido,
July 2007. ISEC2007-47, vol. 107, pp. 17–21 (2007) Thu, Jul 19, 2007 - Fri, Jul 20
: Future University-Hakodate (ISEC, SITE, IPSJ-CSEC)

13. Plummer, D.C.: RFC 826: Ethernet Address Resolution Protocol: Or converting
network protocol addresses to 48.bit Ethernet address for transmission on Ethernet
hardware (November 1982)

14. Postel, J.: Internet Protocol. Request for Comments (Standard) 791, Internet En-
gineering Task Force (September 1981)

15. Stubblefield, A., Ioannidis, J., Rubin, A.D.: A key recovery attack on the 802.11b
wired equivalent privacy protocol (WEP). ACM Transactions on Information and
System Security 7(2), 319–332 (2004)

16. The Aircrack-NG team. Aircrack-ng suite (2007), http://www.aircrack-ng.org
17. Vaudenay, S., Vuagnoux, M.: Passive-only key recovery attacks on RC4. In: Selected

Areas in Cryptography 2007. LNCS, Springer, Heidelberg (to appear, 2007)
18. Wi-Fi Alliance. Wi-Fi Protected Acccess (WPA) (2003), http://www.wi-fi.org

http://lasecwww.epfl.ch/pub/lasec/doc/cha06.pdf
http://www.dachb0den.com/projects/bsd-airtools.html
http://www.netstumbler.org/showthread.php?t=12489
http://www.netstumbler.org/showpost.php?p=93942&postcount=35
http://eprint.iacr.org/
http://www.aircrack-ng.org
http://www.wi-fi.org

Efficient Implementation of the Pairing

on Mobilephones Using BREW

Motoi Yoshitomi1, Tsuyoshi Takagi1, Shinsaku Kiyomoto2,
and Toshiaki Tanaka2

1 Future University - Hakodate, School of System Information Science
116-2, Kamedanakano-cho, Hakodate, 041-0806, Japan

2 KDDI R&D Laboratories Inc.
2-1-15, Ohara, Fujimino, Saitama, 356-8502, Japan

Abstract. Pairing based cryptography can accomplish novel security
applications such as ID-based cryptosystems, which have not been con-
structed efficiently without the pairing. The processing speed of the pair-
ing based cryptography is relatively slow compared with the other con-
ventional public key cryptography. However, several efficient algorithms
for computing the pairing have been proposed, namely Duursma-Lee al-
gorithm and its variant ηT pairing. In this paper, we present an efficient
implementation of the pairing over some mobilephones, and examine the
feasibility of the pairing based cryptosystems on ubiquitous devices. In-
deed the processing speed of our implementation in ARM9 processors
on BREW achieves under 100 milliseconds using the supersingular curve
over F397 . It has become fast enough for implementing security applica-
tions using the pairing on mobilephones.

Keywords: Pairing Based Cryptosystem, Mobilephone, BREW,
Efficient Implementation.

1 Introduction

Tate pairing can realize novel cryptographic applications e.g. short signature [5],
ID-based cryptography [4], which have not been achieved by conventional public
key cryptosystems. Short signature is a digital signature suitable for applications
on memory-constrained devices because the signature length in Tate pairing be-
comes about a half of that in elliptic curve cryptography. ID-based cryptosystems
can replace the public key with an E-mail address or an IP address which can
be easily memorized. However, the processing speed is slower than that of other
public key cryptography. The timing in paper [2] shows that the processing speed
of pairing-based cryptography is about 5 times or more slower than that of RSA
cryptography or elliptic curve cryptography. Recently, Duursma and Lee pro-
posed a very efficient algorithm for computing the pairing over supersingular
curves [6]. Barreto et al. then presented ηT pairing which is about twice faster
than Duursma-Lee algorithm [1]. The two algorithms can compute the pairing
relatively efficient.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 203–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

204 M. Yoshitomi et al.

By the recent progress of devices technology, we are able to implement pairing
based cryptosystems on ubiquitous devices that the processing speed is compar-
atively slow. Especially, it is important to implement and evaluate of a pairing
based cryptography on mobilephones which are the most familiar as ubiquitous
devices. There are two kinds of platforms for mobilephones, JAVA and BREW.
An implementation of the pairing with mobilephones for JAVA was already re-
ported [11].

In this paper, we report about an efficient implementation of the pairing
by mobilephones in ARM9 processors on BREW. Indeed we implement both
Duursma-Lee algorithm and ηT pairing over finite fields F3m for extension de-
grees m = 97, 167, 193, 239, 313. We try to improve the efficiency of pairing by
the following procedures (mainly with engineering efforts). At first, functions
of the finite field and the pairing are implemented from scratch in C language.
Then, we investigate the functions which requires a lot of the processing time
by using a profiling tool. It turns out that the multiplications in the finite field
are about 80% of the whole computation of the pairing programs, and thus we
focus on enhancing the speed of multiplication in F3m .

Note that a substitution operation in F3m on ARM9 processors is relatively
slow to our experiments. Comb method can perform the polynomial multiplica-
tion fast because there are few substitution operations than normal multiplica-
tion algorithm [10]. In this paper, we propose the improved Comb method which
reduces the number of substitution operations by eliminating the first loop of
the Comb method. The improved Comb method enhances the whole speed of
pairing by about 20%. In addition, the unrollment of the loop in the programs
further improves the speed due to the reducement of pipeline hazard.

Finally, we examine the speeds of Duursma-Lee algorithm and ηT pairing
using the above improvements. The processing speed of our implementation in
ARM9 processors on BREW achieves under 100 milliseconds using the supersin-
gular curve over F397 . Therefore the pairing on BREW mobilephones has become
practical enough.

2 Algorithms for Implementing the Pairing

We explain some efficient algorithms for computing in finite fields and Tate
pairing.

2.1 The Elements Representation in F3m

Let F3[x] be the polynomials with coefficients over field F3 = {0, 1, 2}. Finite
field F3m is the set of all polynomials represented by F3m = F3[x]/f(x), where
f(x) is an irreducible polynomial. An element A(x) in F3m can be represented
as follows:

A(x) = (am−1, am−2, · · · , a1, a0), ai ∈ F3,

where ai is an element in F3 for i = 0, 1, · · · ,m−1. Note that F3 has the three val-
ues 0,1 and 2. Therefore, we represent an element in F3 as (hi,lo)-bit, where hi and

Efficient Implementation of the Pairing on Mobilephones Using BREW 205

lo are binary bits. LetW be the word size of a targeted computer, and let A[i] be a
sequence of (hi, lo)-bits with size ofW , where i is a positive integer including zero.
Let t = �m/W �. Then A(x) can be represented by the right-to-left array A[t −
1], · · · , A[1], A[0]. In this case of W = 32 and m = 97, A(x) in F397 is represented
by the array such that A[3] = (0, 0, · · · , 0, a96), A[2] = (a95, a94, · · · , a65, a64),
A[1] = (a63, a62, · · · , a33, a32), A[0] = (a31, a30 · · · , a1, a0). Finally, let A[i]k be
the k-th element of A[i] (for example, A[1]0 is a32).

2.2 Arithmetic in Finite Field F3m

Addition/Subtraction A(x) ± B(x) in F3m can be efficiently implemented by
logical operations such as AND, OR and XOR [7].

Shift-and-Add method [10] is well known as a standard algorithm for comput-
ing the polynomial multiplication over finite fields. This method is an algorithm
which shifts A(x) from right to left, and performs addition C(x)← A(x)±B(x)
based on each (hi, lo)-bit of B(x), where A(x), B(x) and C(x) are elements in
F3m . Therefore Shift-and-Add method requires 2

3m
2 additions a+ b for a, b ∈ F3

and 2
3m

2 substitution operations c← a+ b for the resulting addition. In this pa-
per the leftarrow (←) is called the substitution operation. Comb method [10] is
another efficient algorithm for computing the polynomial multiplication, which
shifts A(x) from right to left only after performing t additions in F3m based on
each (hi, lo)-bit of the array B[t − 1], · · · , B[1], B[0]. A(x) · xiW+k is computed
by shifting A(x) for k ∈ [0,W − 1], j ∈ [0, t− 1] and the word size W . Therefore
the number of the substitution operations in Comb method becomes �m/W �
times smaller than that of Shift-and-Add method, namely it is 1/t. In our im-
plementation in Section 3, we use the Comb method because the substitution
operations on ARM9 processors are inefficient to our experiment.

In characteristic 3, cube can be computed as A(x)3 =
∑m−1

i=0 aix
3i. Cube can

be computed analogously to square in characteristic 2 by using table look-up [7].
Therefore, this process is fast because it does not require the multiplication step
actually. Inversion can be computed by using the extended Euclidean algorithm
for the polynomials over F3[x] [11]. This algorithm was improved extended Eu-
clidean algorithm in characteristic 2.

Note that each operation in F3m has the following relationship of the cost:

A < C < M < I,

where A, C, M and I are the cost for addition/subtraction, cube, multiplication
and inversion, respectively. In our implementation in F397 , the difference of the
costs in each inequality sign (<) is about 10 times (see for Section 3.4).

2.3 Arithmetic in Extended Field F33m and F36m

We can represent F33m and F36m by a tower of extensions to use the operations
of F3m . Let F33m = F3m [ρ]/(ρ3−ρ−1) and F36m = F33m [σ]/(σ2 +1). An element
A in F36m is represented as follows:

206 M. Yoshitomi et al.

A = α1σ + α0 (1)
= a5σρ

2 + a4σρ+ a3σ + a2ρ
2 + a1ρ+ a0 (2)

= (a5, a4, a3, a2, a1, a0) (3)

where αi is an element in F33m , aj be an element in F3m and i = 0, 1, j =
0, 1, · · · , 5. Operations in F33m and F36m are addition, subtraction, cube, mul-
tiplication and inversion, and the operations require operations in F3m . The
operations in F33m and F36m are computed the same way in [8].

We show the costs of operations in F33m and F36m in Table 1. The operations
cost of addition/subtraction and cube in F36m is just 2 times of that in F33m .
Meanwhile the operation cost of multiplication and inversion in F36m is more
than 2 times of that in F33m .

Table 1. The costs of operations in F33m and F36m

Operations F33m F36m

Addition / Subtraction 3A 6A

Multiplication 12A + 6M 51A + 18M

Cube 3A + 3C 6A + 6C

Inversion 6A + 15M + 1I 57A + 38M + 1I

2.4 Tate Pairing

Tate pairing requires operations of elliptic curve over finite fields. In this paper,
we use the following supersingular elliptic curve over F3m ,

E(F3m) = {(x, y) ∈ (F3m)2 | y2 = x3 − x+ 1} ∪ {O}
where O is the point at infinity. The group order �E of E(F3m) is �E = 3m +
3(m+1)/2 +1. Let r be a prime number which satisfies with r|�E and r|(36m−1).
Tate pairing is defined as follows:

e〈·, ·〉 : E(F3m)[r] × E(F36m)[r]→ F
∗
36m/(F∗36m)r

where E(F3m)[r] is the subgroup of order r in E(F3m). Point in E(F36m) is
generated from point in E(F3m) by using distortion map φ(x, y) = (−x+ ρ, yσ).
The pairing e〈P, Q〉 satisfies bilinearity e〈aP, Q〉 = e〈P, aQ〉 = e〈P, Q〉a, where
P, Q are points in E(F3m)[r] and a is an integer.

Miller proposed the first polynomial time algorithm for computing Tate pair-
ing [14]. Duursma and Lee proposed an efficient algorithm using supersingular
elliptic curve over finite fields in characteristic 3 [6]. Kwon proposed an improved
algorithm of Duursma-Lee algorithm which requires no cube root. We present
Duursma-Lee algorithm without cube root in Algorithm 1.

Duursma-Lee algorithm has the step which is called the final exponentiation.
The step is necessary to compute T (33m−1), where T = τ1σ+τ0 is the representa-
tion in equation (2). One final exponentiation usually requires 3mmultiplications
and 1 inversion in F36m . However it can be computed by 1 multiplication and
1 inversion due to T (33m−1) = (−τ1σ + t0)(τ1σ + τ0)−1 [12].

Efficient Implementation of the Pairing on Mobilephones Using BREW 207

Algorithm 1. Duursma-Lee algorithm [13]
INPUT: P = (xp, yp), Q = (xq, yq) ∈ E(F3m)[r]
OUTPUT: e〈P, Q〉 ∈ F36m

1: initialization:
T ← 1 (in F36m)
a← xp, b← yp, x← x 3

q , y ← y 3
q (in F3m)

d← 1 (in F3)
2: for i← 0 to m− 1 do
3: a← a9, b← b9 (in F3m)
4: c← a + x + d (in F3m)
5: R← −byσ − ρ2 − cρ− c2 (in F36m)
6: T ← T 3 (in F36m)
7: T ← TR (in F36m)
8: y ← −y (in F3m)
9: d← d− 1 (in F3)

10: end for
11: final exponentiation:

T ← Algorithm 2 (T)
12: return T

Algorithm 2. Final exponentiation (Duursma-Lee algorithm) [12]
INPUT: T = τ1σ + τ0 ∈ F36m

OUTPUT: T (33m−1) ∈ F36m

U ← T −1 (in F36m)
τ1 ← −τ1 (in F33m)
T ← UT (in F36m)
return T

2.5 ηT Pairing

ηT pairing can reduce the cost of Duursma-Lee algorithm to the half by us-
ing Frobenius map [1]. An improved algorithm without cube root was also
proposed in ηT pairing [3]. We show ηT pairing without cube root in Algo-
rithm 3. ηT pairing need a final exponentiation step to compute T S, where
S = (33m − 1)(3m + 1)(3m − 3(m+1)/2 + 1). Because S is a large value, it takes
much time to compute the final exponentiation compared with Duursma-Lee
algorithm. However, an efficient algorithm which uses the torus T2 for F

∗
36m was

proposed, where T2 is defined T2(F33m) = {A0+A1σ ∈ F
∗
36m : A 2

0 +A 2
1 = 1} [15].

This algorithm for computing T S is shown in Algorithm 5.
The output of Duursma-Lee algorithm and ηT pairing relates as follows:

(ηT 〈P,Q〉S)3(3
(m+1)/2+1)2 = e〈P,Q〉−3(m+3)/2

,

and e〈P,Q〉 can compute from U = ηT 〈P,Q〉S as follows [3]:

e〈P,Q〉 =
(

U2 · U3(m+1)/2 · 3m√

U (m−1)/2
)−1

.

208 M. Yoshitomi et al.

Algorithm 3. ηT pairing [3]
INPUT: P = (xp, yp), Q = (xq, yq) ∈ E(F3m)[r],

S = (33m − 1)(3m + 1)(3m − 3(m+1)/2 + 1)

OUTPUT: (ηT 〈P, Q〉S)3
(m+1)/2 ∈ F36m

1: initialization:
a← xp, b← −yp, x← xq, y ← yq (in F3m)
d← 1 (in F3)
c← a + x + d (in F3m)
T ← yσ + bρ− bc (in F36m)

2: for i← 0 to (m− 1)/2 do
3: c← a + x + d (in F3m)
4: R← byσ − ρ2 − cρ− c2 (in F36m)
5: T ← TR (in F36m)
6: T ← T 3 (in F36m)
7: b← −b (in F3m)
8: x← x9, y ← y9 (in F3m)
9: d← d− 1 (in F3)

10: end for
11: final exponentiation:

T ← Algorithm 5 (T)
12: return T

Table 2. Computation costs of Duursma-Lee algorithm and ηT pairing in F397

Duursma-Lee algorithm (Alg. 1) 4635A + 972C + 1511M + 1I ≈ 1664M
(final exponentiation (Alg. 2)) (108A + 56M + 1I) (≈ 67M)

ηT pairing (Alg. 3) 2785A + 784C + 871M + 1I ≈ 987M
(final exponentiation (Alg. 5)) (496A + 294C + 86M + 1I) (≈ 130M)

Here we estimate the computational costs of Duursma-Lee algorithm and
ηT pairing. The extension degree of the underlying finite fields is usually
chosen as m = 97, 167, 193, 239, 313 [1,2,3,8,11,12]. The computational cost with
m = 97 is shown in Table 2. The third column is the estimated number of
multiplications with A= 0.01M, C= 0.1M, I= 10M appeared in Section 3.4.
Actually, the cost of ηT pairing is smaller than that of Duursma-Lee
algorithm.

3 Implementation of the Pairing on BREW

In this section, we explain our efficient implementation of the pairing in mobile-
phones on BREW1.

1 BREW is a registered trademark of Qualcomm company and it is an application
platform developed for mobilephones of cdmaOne and cdma2000.

Efficient Implementation of the Pairing on Mobilephones Using BREW 209

3.1 Experimental Environment and Analysis of the Program

In this paper, we try to implement the pairing on ARM9 processors which is
currently often used for mobilephones. BREW supports an emulator of ARM
processors on a PC whose programs are written in C language. A source file
in C is complied using an ARM compiler on BREW, and then an executable file
(*.mod) of BREW applications for ARM processors is generated.

Table 3. Timings by profiling the functions in F397

Duursma-Lee algorithm

Time of Function % Hit Count Function

927.176 84.1 199900 FF Multi

83.649 7.6 97776 FF Cube

22.580 2.0 408606 FF Add

ηT pairing

Time of Function % Hit Count Function

338.506 78.6 113200 FF Multi

53.508 12.4 165976 FF Cube

10.281 2.4 351406 FF Add

Here we are interested in the timing of the executable files on ARM processors.
The same source code can be also compiled using a standard C compiler, and we
can examine the timing of the compiled codes on a PC. We deploy a PC (AMD
Opteron Processor 246 (2.0 GHz), RAM : 1 GByte) with GCC version 3.4.2
using the flags “-O2 -fomit-frame-pointer”, and mobilephones (150MHz ARM9
processor and 225MHz ARM9 processor) with an ARM complier using “-Otime”
for optimizing the speed.

In order to implement the pairing, we implement the functions of the finite field
in Section 2.2 and the pairing in Sections 2.4-2.5 from scratch in C language. The
extension degrees and their irreducible trinomial are chosen as m = 97, 167, 193,
239, 313 and x97 + x12 + 2, x167 + x96 + 2, x193 + x12 + 2, x239 + x24 + 2,
x313+x126+2, respectively. The functions in our implementation are named as fol-
lows: FF Add (addition in F3m), FF Multi (Comb method in F3m), FF Cube (cube
in F3m) and so on. Then we examine the timing of the basic functions (FF Add,
FF Multi, FF Cube, etc) by GCC using a profiling tool. The timings by profiling
for Duursma-Lee algorithm and ηT pairing on F397 is shown in Table 3.

In Table 3, the multiplication speeds of both Duursma-Lee algorithm and
ηT pairing are about 80% in the whole program of the pairing. Accordingly, we
try to optimize the speed of multiplication in F3m .

3.2 Optimized Multiplication for BREW

In the following we propose the improved Comb method, which reduces the num-
ber of the substitution operations by unrolling the first loop of Comb method.

210 M. Yoshitomi et al.

Here we explain the improved Comb method with extension degree m = 97, but
it can be applicable to other extension degrees m = 167, 193, 237, 313.

We now focus on B[3] which is one of the array representing B(x) ∈ F397 .
Note that B[3] only contains the 96-th coefficient of B(x) as B[3]0, namely,

B[3] = (B[3]31, B[3]30, · · · , B[3]1, B[3]0) = (0, 0, · · · , 0, b96).

When we compute A(x) ·B(x) using Comb method in Section 2.2, we have to
perform the addition of A(x) ·B[3] and substitution operations for a temporary
save of the addition even B[3]j = 0 for j = 31, 30, · · · , 1. There are many sub-
stitution operations and additions which do not affect the result of A(x) ·B(x).
Those operations can be eliminated by unrolling the loop of computing B[3]. In
other words, the loop corresponding to B[i]j with j > 0 is not computed for
i = 3, and we only fulfill the complete loop for B[i]0 with i = 0, 1, 2, 3. As a
result, the proposed scheme can save 31 substitution operations compared with
Comb method, and we achieve about 20% faster multiplication. We show the
improved Comb method in Algorithm 4.

Algorithm 4. Improved Comb method m = 97
INPUT: A(x),B(x) ∈ F3m , W = 32 : word length
OUTPUT: C(x) = A(x) ·B(x) mod f(x) ∈ F3m

1: C(x)← 0
2: for i← 0 to 3 do
3: C(x)← C(x) + B[i]0A(x)xiW

4: end for
5: for j ← 1 to W do
6: for i← 0 to 2 do
7: C(x)← C(x) + B[i]jA(x)xiW+j

8: end for
9: end for

10: for i← 2m − 2 downto m do
11: ci−85 ← ci−85 − ci

12: ci−97 ← ci−97 + ci

13: ci ← 0
14: end for
15: return C(x)

This algorithm has two steps, the polynomial multiplication step (line 1-9)
and the reduction step (line 10-14), where the reduction step is the computation
of c(x) mod f(x). The main loop is line 5-9, and process of loop unrolling is
line 2-4. The difference of the proposed scheme from Comb method is line 6.
The number of iteration in the loop of line 6 becomes one time shorter, and the
omitted process is moved to line 2.

Efficient Implementation of the Pairing on Mobilephones Using BREW 211

3.3 Further Discussion on Speed-Up

We carry out the following two methods for speed-up of the pairing.
In the one method, we perform effectively multiplication in F36m in the pairing

algorithms. The multiplication T ·R in F36m is computed in line 7 of Algorithm 1
and line 5 of Algorithm 3. Kerins et al. pointed out the element R = r5σρ

2 +
r4σρ + r3σ + r2ρ

2 + r1ρ + r0 in F36m satisfies r4 = r5 = 0 and r2 = 2 [12].
The number of multiplication in F3m required for T · R is reduced because the
multiplication with the constants (r2, r4 and r5) is virtually for free. We can
reduce the speed of the whole pairing about 10% by developing the optimized
multiplication for T · R.

In the other method, we unroll the loop used in the functions of F3m . The
functions in F3m processes 32 coefficients depending on word length at a time.
For example, the addition of m (hi, lo)-bits is constructed �m/W � times of loop.
By unrolling this loop, the count of a pipeline hazard in the target processor
can be reduced and can be speeded up. Actually, the processing speed can be
improved about 30% by unrolling the loop.

Finally, we also implemented a window method in Algorithm 4. However the
speed of the window method of width 2 was slower on the ARM9 processors
(Note that it was faster on the Opteron processor). Therefore we do not use a
window method in this paper. One of the reasons is that the precomputation
table in a window method cannot store in the CPU cache.

3.4 Implementation Result

We show the average time of the operations in F3m and the pairing algorithms,
Duursma-Lee algorithm and ηT pairing, on the ARM9 processors and on the
Opteron processor in Table 4-6. We compute the average time for the pairing algo-
rithm with random input at least 200 times on the ARM9 processors and at least
20,000 times on the Opteron processor. The optimized program at m = 97 is de-
noted by ”optF397”. This program uses the improved Comb method with unrolling
the loop, and other programs use Comb method without it in F3m .

Table 4. The average time of the operations in F3m and the pairing algorithms on the
150MHz ARM9 processor (msec)

150MHz ARM9 optF397 F397 F3167 F3193 F3239 F3313

Addition (A) 0.0006 0.0009 0.0012 0.0014 0.0016 0.0020

Subtraction (A) 0.0006 0.0009 0.0012 0.0014 0.0016 0.0019

Cube (C) 0.0070 0.0067 0.0156 0.0189 0.0229 0.0261

Multiplication (M) 0.0642 0.0852 0.2055 0.2200 0.3410 0.5308

Inversion (I) 0.6915 0.8360 1.8540 2.3765 3.4115 5.8725

Duursma-Lee algorithm 98.96 129.19 549.39 701.18 1303.07 2616.63

ηT pairing 56.50 76.68 337.25 401.27 738.23 1459.65

212 M. Yoshitomi et al.

Table 5. The average time of the operations in F3m and the pairing algorithms on the
225MHz ARM9 processor (msec)

225MHz ARM9 optF397 F397 F3167 F3193 F3239 F3313

Addition (A) 0.0004 0.0005 0.0007 0.0008 0.0009 0.0012

Subtraction (A) 0.0004 0.0005 0.0007 0.0008 0.0010 0.0012

Cube (C) 0.0050 0.0051 0.0107 0.0133 0.0155 0.0162

Multiplication (M) 0.0393 0.0530 0.1448 0.2313 0.2200 0.3420

Inversion (I) 0.4590 0.5825 1.6890 1.4480 2.3040 3.7280

Duursma-Lee algorithm 66.00 84.70 356.11 457.93 847.56 1702.64

ηT pairing 37.52 50.34 218.27 261.88 478.54 947.30

Table 6. The average time of the operations in F3m and the pairing algorithms on the
2.0 GHz Opteron processor (μ sec)

2.0 GHz Opteron optF397 F397 F3167 F3193 F3239 F3313

Addition (A) 0.0118 0.0158 0.0219 0.0250 0.0280 0.0421

Subtraction (A) 0.0118 0.0160 0.0221 0.0250 0.0281 0.0421

Cube (C) 0.1631 0.1631 0.3062 0.3406 0.4151 0.4440

Multiplication (M) 1.5955 2.3438 5.1805 5.9468 8.6590 14.7052

Inversion (I) 16.6686 19.7985 44.3534 62.2334 86.1984 137.4680

Duursma-Lee algorithm 2,610 3,810 13,980 18,531 32,800 71,780

ηT pairing 1,480 2,240 8,540 10,473 18,400 39,720

In optF397 and F397 , it turns out that the addition/subtraction (A) was about
0.01 times of the multiplication (M), the cube (C) was about 0.1 times and
the inversion (I) was about 10 times. This estimation have little differences
with the ARM9 processors and the Opteron processor. Based on the values,
we can estimate the ratios of final exponentiation of Duursma-Lee algorithm
and ηT pairing as 4.03% and 13.2%, respectively. The ratios required in F3m in
the pairing computation become 2.78% addition/subtraction (A), 5.84% cube
(C), 90.78% multiplication (M) and 0.60% inversion (I) in Duursma-Lee algo-
rithm, and 2.82% addition/subtraction (A), 7.94% cube (C), 88.22% multipli-
cation (M) and 1.01% inversion (I) in ηT pairing, respectively. In our programs
except optF397 , when extension degree becomes about 2 times, the processing
speed becomes about 5 times slower on both the ARM9 processors and the
Opteron processor.

The total size of executable files (*.mod) in optF397 was 36,528 Bytes. The
size of other programs for each degree (m = 97, 167, 193, 239, 313) is smaller
than that of optF397 . As an average size of executable files currently, 300 Kbytes
or less is standard. Then, the size of our executable files becomes the size of
around 10% in BREW applications.
ηT pairing is more efficient than Duursma-Lee algorithm in ARM9 proces-

sors and an Opteron processor. The processing speed achieves 56.5 msec in the

Efficient Implementation of the Pairing on Mobilephones Using BREW 213

150MHz ARM9 processor and 37.52 msec in the 225MHz ARM9 processor for
computing ηT pairing on the supersingular curve over F397 .

4 Conclusion

In this paper, we presented efficient implementation of Duursma-Lee algorithm
and ηT pairing over F3m using BREW mobilephones. From our initial imple-
mentation in F397 , the whole timing required for the multiplication is about 80%
in the computation of the pairings. We thus proposed improved Comb method,
which is an optimized multiplication for BREW mobilephones, namely with
fewer substitution operations. Moreover, we improved the multiplication T · R
in F36m of the pairing algorithms and we performed loop unrolling in the finite
field.

As a result, the processing speed of our optimized pairing implementation
using BREW on the 150MHz ARM9 and the 225MHz ARM9 achieved under
100 milliseconds. It has become efficient enough to implement security applica-
tions, such as short signature or ID-based cryptosystems, using the pairing on
BREW mobilephones.

References

1. Barreto, P., Galbraith, S., O’hEigeartaigh, C., Scott, M.: Efficient Pairing Compu-
tation on Supersingular Abelian Varieties. Designs, Codes and Cryptography 42(3),
239–271 (2007)

2. Barreto, P., Kim, H., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based
Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368.
Springer, Heidelberg (2002)

3. Beuchat, J., Shirase, M., Takagi, T., Okamoto, E.: An Algorithm for the ηT Pairing
Calculation in Characteristic Three and its Hardware Implementation. In: IEEE
International Symposium on Computer Arithmetic, ARITH-18, pp. 97–104 (2007)

4. Boneh, D., Franklin, M.: Identity Based Encryption from the Weil Pairing. SIAM
J. Comput. 32(3), 514–532 (2001)

5. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

6. Duursma, I., Lee, H.: Tate Pairing Implementation for Hyperelliptic Curves y2 =
xp−x+ d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123.
Springer, Heidelberg (2003)

7. Galbraith, S., Harrison, K., Soldera, D.: Implementing the Tate Pairing. In: Fieker,
C., Kohel, D.R. (eds.) Algorithmic Number Theory. LNCS, vol. 2369, pp. 324–337.
Springer, Heidelberg (2002)

8. Granger, R., Page, D., Stam, M.: On Small Characteristic Algebraic Tori in Pairing-
Based Cryptography. LMS Journal of Computation and Mathematics 9, 64–85
(2006)

9. Granger, R., Page, D., Stam, M.: Hardware and Software Normal Basis Arithmetic
for Pairing-Based Cryptography in Characteristic Three. IEEE Transactions on
Computers 54(7), 852–860 (2005)

214 M. Yoshitomi et al.

10. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Heidelberg (2004)

11. Kawahara, Y., Takagi, T., Okamoto, E.: Efficient Implementation of Tate Pairing
on a Mobile Phone using Java. In: CIS 2006. LNCS (LNAI), vol. 4456, pp. 396–405
(2007)

12. Kerins, T., Marnane, W., Popovici, E., Barreto, P.: Efficient Hardware for the Tate
Pairing Calculation in Characteristic Three. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005)

13. Kwon, S.: Efficient Tate Pairing Computation for Supersingular Elliptic Curves
over Binary Fields. Cryptology ePrint Archive, Report 2004/303 (2004)

14. Miller, V.: Short Programs for Functions on Curves (unpublished Manuscript)
15. Shirase, M., Takagi, T., Okamoto, E.: Some efficient algorithms for the final expo-

nentiation of ηT pairing. In: ISPEC 2007. LNCS, vol. 4464, pp. 254–268 (2007)

A Final Exponentiation for Pairing

In this appendix, we describe the algorithms used for the pairing in this paper.

Algorithm 5. Final exponentiation (ηT pairing) [15]
INPUT: K ∈ F36m , S = (33m − 1)(3m + 1)(3m − 3(m+1)/2 + 1)
OUTPUT: KS ∈ F36m

1: K ← K33m−1, G← Λ(K) = K3m+1

2: K ← G, K ← Λ(K) = K3m+1

3: for i← 0 to (m− 1)/2 do
4: G← G3

5: end for
6: g2 ← −g2, g1 ← −g1, g0 ← −g0

7: return K ·G

Algorithm 6. Computation of Λ(K) [15]
INPUT: K = (k5, k4, k3, k2, k1, k0) ∈ F36m

OUTPUT: Λ(K) = K3m+1 ∈ T2(F33m)
1: v0 ← k0k2, v1 ← k3k5, v2 ← k1k2, v3 ← k4k5, v4 ← (k0 + k3)(k2 − k5)
2: v5 ← k3k1, v6 ← k0k4, v7 ← (k0 + k3)(k1 + k4), v8 ← (k1 + k4)(k2 − k5)
3: c0 ← 1 + v0 + v1 ∓ v2 ∓ v3

4: c1 ← v7 − v2 − v3 − v5 − v6 (m ≡ 1 mod 12)
c1 ← v5 + v6 − v7 (m ≡ −1 mod 12)

5: c2 ← v2 + v3 + v7 − v5 − v6

6: c3 ← v1 + v4 ± v5 − v0 ∓ v6

7: c4 ← v3 + v8 ± v0 − v2 ∓ v1 ∓ v4

8: c5 ← ±v3 ± v8 ∓ v2

9: return C = (c5, c4, c3, c2, c1, c0)

Security Analysis of MISTY1

Hidema Tanaka1, Yasuo Hatano2, Nobuyuki Sugio3, and Toshinobu Kaneko4

1 National Institute of Information and Communications Technology,
4-2-1 Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan

2 Systems Development Laboratory, Hitachi, Ltd.
Yokohama Laboratory, 292, Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa,

244-0817, Japan
3 Service & Solution Development Department, NTT DoCoMo, Inc.

NTT DoCoMo R&D Center 3-5, Hikarinooka, Yokosuka, Kanagawa 239-8536, Japan
4 Tokyo University of Science

2641 Yamazaki Noda, 278-8510, Japan

Abstract. We analyze 64-bit block cipher MISTY1 from several stand-
points. Our analysis consists of two algorithms based on the higher order
differential property of the S-box. The first succeeds in attacking a six
round MISTY1 provided 218.9 chosen plaintexts and 280.9 computational
cost. The second succeeds in attacking a seven round MISTY1 with no
FL functions by controlling the value of the fixed part of the plaintext and
using a 2-round elimination method provided 211.9 chosen plaintexts and
2125.1 computational cost. Both algorithms exceeds the existing attack
algorithms against MISTY1 and give new perspectives for the security
of MISTY1.

Keywords: MISTY1, Higher order differential, Chosen plaintext attack.

1 Introduction

MISTY1 is a 64-bit block cipher with a 128-bit secret key [6]. It has an eight
round Feistel structure with FO functions and FL functions. Since its security
is basically guaranteed by FO functions only, a three round MISTY1 with no
FL functions is still provably secure against differential cryptanalysis and linear
cryptanalysis. It has relatively high performance on both software environments
and hardware platforms compared with other 64-bit block ciphers. Because of
these desirable security properties and the high performance, MISTY1 is con-
sidered as one of the strongest 64-bit block ciphers and it has been widely evalu-
ated by some international cryptographic technology evaluation projects such as
NESSIE [8]. And it is considered as a strong candidate for several international
standardization [9]. We also note that KASUMI, a variant of MISTY1, is the
standard cipher within 3GPP systems [10]. Hence, it is significant for information
security community to understand the precise security level of MISTY1.

In this paper, we show a new development of security evaluation for MISTY1
by describing two attack algorithms using the higher order differential property

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 215–226, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

216 H. Tanaka et al.

of S-box. By analyzing the key schedule and relation among sub-keys, we derive
the condition for the secret key to be insecure. Under the condition, we can con-
struct an attack algorithm against a six round MISTY1 that has FL functions
in the last round. This algorithm needs 218.9 chosen plaintexts and 280.6 com-
putational cost. Knudsen and Wagner have shown that a five round MISTY1 is
attackable by integral cryptanalysis [2]. Their method needs 234 chosen plain-
texts and 248 computational cost. MISTY1 has FL functions in the last round,
however, Knudsen and Wagner study a five round MISTY1 that has no FL func-
tion in the last round. We study a six round MISTY1 that has FL functions in
the last round. Therefore, our target is more realistic and harder to attack than
the model in [2].

Next, we invent a technique that controls the value of the fixed part of the plain-
text. Using this technique and the 2-round elimination method, we can construct
an attack algorithm against a seven round MISTY1 with no FL functions. This
needs 211.9 chosen plaintexts and 2125.1 computational cost. Kühn shows that a
six round structure of MISTY1 with no FL functions is attackable by impossi-
ble differential cryptanalysis [5]. His method needs 254 chosen plaintexts and 261

computational cost. So, we improve the number of attackable rounds from [5].
These results indicate that MISTY1’s simple key schedule and low order of

S-boxes may be its weaknesses.

��������
FL9 FL10

·· ··
��������

FL3 FL4

FO3
� � �

��������
FO2

� � �

��������

FL1 FL2
FO1

� � �

�
P

�
C

��KOi4
��������

FIi3

��

��KOi3

�KIi3

��������

FIi2

��

��KOi2

�KIi2

��������

FIi1

��

��KOi1

�KIi1

�

�

FO function

��������

S9
��

��������

S7
���� KIij1

�� KIij2

��������

S9
��

�

�

FI function

�

�

� �∩�
KLi1

∪�
KLi2

��

FL function

Fig. 1. MISTY1

Table 1. Key schedule

Sub-key KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLi1 KLi2

Secret key Ki Ki+2 Ki+7 Ki+4 K’i+5 K’i+1 K’i+3 Ki (odd i) K’i+6 (odd i)
sub-block K’i+1 (even i) Ki+3 (even i)

Security Analysis of MISTY1 217

� FO � ��
�

Zi−2 Zi−1

Zi
(i)

Z′
i

Zi

�
FL
�

(ii)

Fig. 2. Variables

2 Preliminaries

2.1 Notation

We explain briefly the notations in this paper. See Figure 1 for the structure of
MISTY1. A plaintext P is expressed as follows :

P = (PL||PR)

= (X15, . . . , X8||X7, . . . , X0), Xi ∈
{

GF(2)7 : i = even
GF(2)9 : i = odd (2.1)

MISTY1 has two types of S-box; S7 and S9 in the FI function. S7 is a 7-bit
S-box whose order is 3. And S9 is a 9-bit S-Box whose order is 2.

We summarize the key schedule in Table 1. The sub-keys are defined as follows.

K = (K7, . . . ,K0), Ki ∈ GF(2)16

K ′i = FI(Ki;Ki+1) (2.2)

We define the variables Zi and Z ′i as follows (see Figure 2). When FL functions
are operated after the FO function, Zi is rewritten as Z ′i, and the output from
the FL function is redefined as Zi (see Figure 2 (ii)). Therefore, Z ′−1 = PL and
Z ′0 = PR.

We denote the left-most m-bit of the sub-block Qi by QLm
i , and the value of

n-th order differential of the sub-block Qi by Δ(n)Qi, respectively.

2.2 Higher Order Differential Property

Babbage and Frisch analyzed the details of the relation between the linear and
differential properties and the seventh order differential property [1]. Then they
found an important property of the MISTY-structure and S-boxes. The property
plays a crucial role in this paper.

Property 1: When MISTY1 has no FL functions, if the most-right seven bits of
the input of FOi consists of seventh order differential, the following holds for
any value of the fixed part of the input or sub-keys.

Δ(7)ZL7
i+1 = 0x6d (2.3)

For example, Δ(7)ZL7
3 =0x6d holds for the variable sub-block X0 ∈ GF(2)7.

Our algorithms against MISTY1 exploit the property 1. In Section 3, we show

218 H. Tanaka et al.

that the condition of the secret key satisfies the equation (2.3) in the case of
MISTY1 with FL functions as well. Our algorithm exploits the simple relation
among sub-keys to make successful attack. In Section 4, we show an attack
algorithm which exploits the property 1 as effective as possible. It focuses on the
low cost of solving the attack equation because of the low order of S-box.

3 Weakness of Key Schedule

3.1 Basic Idea

In this section, we analyze MISTY1 with FL functions. The MISTY1’s compact
key schedule contributes to high implementing performance. However, there are
very simple relations among sub-keys produced by the key schedule. Therefore,
the number of unknowns in an attack equation is small, and so the necessary
complexity to solve it turns out to be small actually appeared.

If the sub-key used by the AND operation contains only zeros and the sub-key
used by the OR operation contains only ones, the output of the FL function is
the EX-OR of its input and a constant. Thus, if we fix the sub-keys as follows,

KL21 = KL31 = 0x0000, KL22 = KL32 = 0xffff (3.1)

the higher order differential property of Z ′3 is same as the property of output
from third round of MISTY1 with no FL functions. Thus Δ(7)Z ′L7

3 =0x6d holds
from equation (2.3) (see Figure 3).

The following condition for the secret key K is derived using the key schedule.

K ′3 = K2 = 0x0000, K5 = K ′8 = 0xffff (3.2)

where

K ′3 = FI(K3;K4), K ′8 = FI(K8;K1). (3.3)

Consequently, we need to fix the secret key sub-blocks K1, K2, K3, K4, K5 and
K8.

However, we can show that the number of fixed secret key sub-blocks becomes
small if we use an eighth order differential for the attack. In the case of fixed
KL3, from the formal analysis, the degree of the left-most 7 bits in the output of
FO3(Z ′3

L7) is 9 (see left part of figure 4). However, equation (2.3) implies that
Δ(7)Z ′3

L7 =0x6d. In the case of NOT fixed KL3, the formal degree of Z ′3
L7 is

estimated to be 8 (see right part of figure 4). Comparing these estimations, we
conjecture that the degree of Z ′3L7 for NOT fixed KL3 is 7 and the value of its
seventh order differential depends on the value of the fixed part of the plaintext
and sub-keys.

From the properties of higher order differentials, it is easy to see that if Δ(n)Z
is constant, then Δ(n+1)Z is equal to 0. Since the attacker cannot specify the
value of the seventh order differential of Z ′3

L7, we consider an attack using the

Security Analysis of MISTY1 219

FO3

�
�

FL3
�KL32=K2=0xffff

KL31=K’8=0x0000

Δ(7)Z′L7
3 =0x6d

�

FO2

�

PR+0xffff0000

�

�
�� PL

Z′
2+0xffff0000

FL2
�KL22=K5=0xffff

KL21=K’3=0x0000

�

�

PR

��������

FI23
��

��������

FI22 �
��

��������

FI21
��

�

�

X0

[0|1]

[3|3]

[3|3]
[2|2]

[3|3] [2|2]

��������

S9
��

��������

S7
��

��������

S9
��

�

�

X0

[1]

[3]

[2]

[3]

[3] [3]

Fig. 3. Formal analysis

��������

FI33
��

��������

FI32 �
��

��������

FI31

�

��

�

�

[3|3] [2|2]

[9|12]

[6|8]

[9|12]

Δ(7)Z′L7
3 =0x6d

<KL3 fixed>

��������

FI33
��

��������

FI32
��

��������

FI31�
��

�

�

[3|3] [2|2]

[9|12]

[9|12]

[8|11]

Δ(7)Z′L7
3 =unknown

<KL3 NOT fixed>

��������

S9
��

��������

S7
��

��������

S9
��

�

�

[2|2]

[4]

[6]

[8]

[6] [8]
��������

S9
��

��������

S7
��

��������

S9
��

�

�

[3|3]

[6]

[9]

[12]

[9] [12]

Fig. 4. Formal analysis of FO3

eighth order differential. Moreover, we consider the case of NOT fixed KL21. The
plaintext sub-blocks X2 and X3 affect the maximum degree of output because
they are inputted to FI21. Therefore we cannot use them as variable sub-blocks.
Thus we consider an eighth order differential using X0 and one bit selected from
among X1. We confirmed that Δ(8)Z ′3

L7 =0 for such an eighth order differential
by computer simulation although we have to omit the details of the simula-
tion due to the limitted space. The attack equation derived from the equation
Δ(8)Z ′3

L7 = 0 has unknowns with respect to sub-keys for FL6 and FO5. How-
ever, if we fix the value of the secret key sub-block as K7 = KL62=0xffff, we
have Δ(8)ZL7

3 = 0. We can neglect the unknowns with respect to the sub-keys
for FL6.

220 H. Tanaka et al.

� �
CL CR

FL7 FL8

��������
FO6

� � �

��������
FO5

� � �

A

B
C

Δ(8)ZL7
3 =0

Fig. 5. Relation of the variables A, B and C in equation (3.4)

Our attack succeeds under the condition that the secret key sub-blocks satisfy
K5 = K7 =0xffff.

inter.tex

3.2 Attack Equation

In general, an attack equation is derived by calculating a higher order differen-
tial from the ciphertext side step by step. So, the attacker starts to derive an
equation to solve the sub-keys in the last round. Then he derives a new equation
to determine the next level unknown sub-keys using the information already ob-
tained. So it is necessary for attacker to solve many attack equations. Contrary
to such a general approach, we employ a different method, that is, we derive
an attack equation for a secret key directly. So it suffices for us to construct an
attack equation only once, and solve it.

We apply a method in [7] to solve the attack equation. In this paper, we call it
an algebraic method. The algebraic method was proposed by Moriai, Shimoyama
and Kaneko, to solve KN cipher and CAST. This method solves higher order
equations by regarding them as linear equations: basically, every product of
(more than two) variables is identified to a new variables, and the resulting
equation has order 1, that is, every term of the resulting equation contains only
one variables. Let us demonstrate an example of higher order equation with three
variables (x2, x1, x0) and the equation transformed. The equation a0x0⊕ a1x1⊕
a2x0x2 = 1 is transformed to a0x0⊕a1x1⊕a2x3 = 1, where x3 is a new variable
which is identified to x0x2. We should note that the resulting equation is linear,
that is, every term contains at most one variable. So we can regard the equation
as a linear equation which contains at most 3C1 + 3C2 + 3C3 = 7 new variables
if the original equation contains three variables. Since the higher order equation
with three variables is defined as the linear equation with seven variables by this
procedure, to determine variables, we need more linear independent equations
than equations required by a brute force search. However, the computational
cost to solve linear equations is much smaller than the cost required by a brute
force search. The reader is referred to [7] for the precise definition and detailed
discussion of the algebraic method.

The number of the independent unknown terms turns out to be large if the
number of secret key sub-blocks inputted to S-boxes is large. On the other hand,

Security Analysis of MISTY1 221

it is hard to solve a system of equations with a large number of independent
unknown terms. Therefore, we need to keep the number of secret key sub-blocks
inputted to S-boxes to a minimum in order to make the attack equation easily
solvable. Following such a strategy, we construct an attack equation with a small
number of independent unknown terms, and then present an attack algorithm
against a six round MISTY1 using 2-round elimination method that estimates
a part of the secret key sub-blocks with a brute force search.

Let us see the construction of our attack equation as follows. First of all, the
following attack equation can be derived using 2-round elimination method.

Δ(8)ZL7
3 = Δ(8){A+ B} = 0,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

A = FL8(CR; KL8)L7

= FL8(CR;K ′6,K8)L7

B = FO5(C; KO5,KI5)L7

= FO5(C;K1,K
′
2,K4,K5,K

′
6,K7,K

′
8)

L7

C = FL7(CL; KL7) + FO6(FL8(CR;K ′6,K8); KO6,KI6)
= FL7(CL;K ′2,K4) + FO6(FL8(CR;K ′6,K8);K ′1,K2,K

′
3,K5,K

′
7,K8)

(3.4)

The relation of the variables A, B and C is shown in Figure 5.
Next, we consider the optimal combination which divides unknowns into the

group determined by an algebraic method and the group determined by a brute
force search. Since K5 andK7 are fixed, we have 6 secret key sub-blocks (total: 96
bits) as unknowns. Since the number of terms inputted to the S-boxes becomes
the maximum, it is difficult to solve KO61, KO62 and KI61 by using the algebraic
method. Thus we use a brute force search to estimate the secret key sub-blocks,
K6(= KO61), K8(= KO62) and K ′3(= KI61). Since K ′7(= FI(K7;K8)), we can
treat the terms with respect to KI62 = K ′7 as known values. Consequently,

K5,K7 = fixed,
K ′3,K6,K8 = estimated by brute force search,
K ′7 = calculated, (3.5)

and we have K1, K ′1, K2, K ′2 and K4 as unknowns. Note that K1 = KO54 is a
constant term in the attack equation. Thus the terms with respect to K1 do not
exist in the eighth order differential. Thus we can omit terms with respect to K1

and determine K ′1, K2, K ′2 and K4 (total 64 bit) by using the algebraic method.
Consequently, our attack equation consists of equation (3.4) and (3.5). By

solving the attack equation, we can determine secret key sub-blocks K ′1, K2,
K ′2, K

′
3, K4, K5, K6, K7 and K8. Since K ′1 = FI(K1;K2) and K ′3 = FI(K3;K4),

secret key sub-block K1 and K3 can be determined by using (K ′1, K2), or
(K ′3, K4).

222 H. Tanaka et al.

3.3 Complexity

Let us assume that an attack equation derived from the value of the n-th order
differential of the b-bit sub-block among the output. Let L be the number of
independent unknowns in the attack equation. To determine all the unknowns,
we need at least L linear equations. Since we can derive b linear equations from
one n-th order differentials, we need �L/b� different n-th order differential to
derive the L × L coefficient matrix. If we use the same techniques shown in
[7] to derive the matrix, we need to calculate the F function operation using L
different temporary sub-keys. Thus we need 2n × �L/b� chosen plaintexts and
2n × �L/b� × L F function operations (computational cost). After deriving the
coefficient matrix, we can solve the equation by Gauss - Jordan elimination.
In general, the cost required by Gauss - Jordan elimination can be negligible
comparing with the cost required to calculate theL× L coefficient matrix.

We consider the complexity to solve the attack equation by estimating the
other unknown S (s bits). If we solve the attack equation using L + α linear
equations, the equation holds a false value of S, with probability 2−α. Therefore,
if we have additional α linear equations for such that 2s−α << 1, we are able to
eliminate all false value of S. Thus we need 2n × �(L+ α)/a� chosen plaintexts
and 2n+s × �(L+ α)/a� × L computational cost.

We counted the number of independent unknown terms appeared in the attack
equation (3.4) and (3.5) by computer simulation. Although the details are omit-
ted, we found 13,269 independent unknown terms. Since we estimated an s = 48
bit unknown with the brute force search, we set α = 64 (248−64 = 2−16 << 1).
And since we derive the attack equation (3.4) focusing on 7-bit output sub-block
ZL7

3 , b is equal to 7. Consequently, we estimate that 28×�(13269 + 64)/7� � 218.9

chosen plaintexts and 28+48 × �(13269 + 64)/7� × 13269 � 280.6 computational
cost are needed to determine a 128-bit secret key.

In this section, we attacked 6 round MISTY1 with FL functions, and suc-
ceeded in attacking because we could make the complexity for solving the attack
equation relatively small (280.6). There are two reasons that we could make it.
First, the key schedule for MISTY1 makes only 16 combinations of sub-keys.
Second, the relation between 16 combinations of secret key sub-blocks is rela-
tively simple because the key schedule is simple. MISTY1 has high performance
because of its simple key schedule whereas our result suggests its key schedule
might be a weakness in its security.

4 Low Order of S-Box

4.1 Basic Idea

In this section, we analyze MISTY1 with no FL functions (no FL version). We
omit the key schedule in the following, because it is not defined for no FL version.
The structure of no FL version is shown in Figure 6. We uses equivalent functions
and sub-keys to simplify the attack algorithm. Our goal is to know the maximum
attackable number of rounds for the no FL version using property 1.

Security Analysis of MISTY1 223

��������
·· ··

��������
FO4

� � �

FO3
� � �

��������
FO2

� � �

��������

�K1
� K2
��

FO1
� � �

�
P

�
C

��������

FIi3

��

��������

FIi2

��

��������

FIi1

��

�

�

Equivalent FO

��������

S9
��

��Kij3

��������

S7
��

��Kij2

��������

S9
��

��Kij1

�

�

Equivalent FI

Fig. 6. MISTY1 with no FL functions

We consider an attack using the chosen plaintext P which has the following
form :

P = (V ||PR), V = (0, 0, 0, 0, 0, 0, 0, X8) (4.1)

where “0” denotes a fixed plaintext sub-block. In this case, since the variable
sub-block is inputted to the first round, Δ(7)ZL7

2 =0x6d holds from the equation
(2.3).

However, if the attacker can select the value of PR which satisfies

Z1 ⊕ PR = constant, (4.2)

he can get Δ(7)ZL7
4 =0x6d.

Let us discuss the details of FO1. The structure of FO1 is shown in Figure 7.
Since the output of FI11 and the outputs of the first S9 in FI12 and FI13 are
constants, the value of the output of FO1 is determined by the value of equivalent
sub-keys K122, K123, K132 and K133 (total: 32 bits).

Let us consider the technique to adjust the value of PR using the equation

PR = FO(V ;K) (4.3)

where K denotes a 32 bit variable corresponding to equivalent sub-keys K122,
K123, K132 and K133 . The other equivalent sub-keys in FO are fixed to some
constant value (for example, all zeros). As a result, equation (4.2) holds with
probability 2−32. If the attacker has all the value of K, he can getΔ(7)ZL7

4 =0x6d.

4.2 Attack Equation

From the discussion above, Δ(7)ZL7
4 =0x6d holds with probability 2−32. Thus

we can derive the following attack equation by calculating the seventh order
differential from the ciphertext side.

224 H. Tanaka et al.

��������

FI13
��

��������

FI12 �
��

��������

FI11
��

�

�

V

��������

S9

��K1j3

��K1j2

��K1j1

��

��������

S7
��

��������

S9
��

�

�

V

j = 2or3

Fig. 7. Structure of FO1

Δ(7){FO6(CL;K611,K612,K621,K622,) + CR}L7 = 0x6d (4.4)

We solve the equation using the algebraic method. Although the details are
omitted, we found that the number of independent unknown terms appeared in
the attack equation (4.4) is 74 by computer simulation.

We use a brute force search for K. If K satisfies equation (4.2), the attack
equation (4.4) holds and we can determine the unknown terms. But if it does not
satisfy equation (4.2), the attack equation does not hold. In the same way as in
Section 3.3, we set α = 48 (232−48 = 2−16 << 1) to solve the equation. And since
we derive the attack equation (4.4) focusing on 7-bit output sub-block ZL7

4 , b is
equal to 7. As a result, we need 27×�(74 + 48)/7� � 211.2 chosen plaintexts and
27+32 × �(74 + 48)/7�× 74 � 249.4 computational cost. This computational cost
is much smaller than 2128 needed for brute force search for secret key. Therefore
a 2-round elimination method using a brute force search for the sub-key in the
seventh round (total: 75 bits) works.

4.3 Complexity

Since we determine a 107-bit unknown (a 32-bit K and 75-bit sub-key in the
seventh round), we set α = 123 (2107−123 = 2−16 << 1). Thus we need 27 ×
�(74 + 123)/7� � 211.9 chosen plaintexts and 27+32+75 × �74 + 123/7� × 74 �
2125.1 computational cost to attack a seven round MISTY1 with no FL functions.

In this section, we attacked 7 round MISTY1 with no FL functions, and
succeeded in attacking because our technique enable us to raise the number of
rounds.

The computational cost can be divided into three tasks: 2-round elimination,
adjusting the value of PR, and matrix computation. Since S-boxes has low order,
the order of the attack equation turns out to be low. Then the number of the

Security Analysis of MISTY1 225

independent unknown terms is small. This makes the cost for the matrix com-
putation small. Then we can use our computation resource to the other tasks,
that is, computation for the 2-round elimination and adjusting the value of PR.

Our technique enables us to determine the output of FO1 for the input V using
only 32-bit sub-key satisfying (4.2). Note that this is a big improvement because
75-bit K satisfying (4.2) is necessary to determine the output of FO1 unless a
certain trick is employed. Because the cost for matrix computation is kept small,
we have more computation cost available and then the reduction from 75-bit to
32-bit helps to raise the number of rounds, that is, we could attack seven round
MISTY1 with no FL.

Table 2. Comparison of results

#rounds #chosen plaintexts comput. cost method

MISTY1 5 234 248 integral [2]
with FL 6 218.9 280.9 Section 3

MISTY1 6 254 261 impossible differential [4,5]
with no FL 7 239 2125.1 Section 4

5 Conclusions

First, we showed the attack of a six round MISTY1 with FL functions. This
attack algorithm takes advantage of the simplicity of the key schedule. We gave
the condition for the secret key to satisfy Δ(8)ZL7

3 = 0. And we also showed
the technique to reduce the complexity to solve the attack equation using the
simple relation among sub-keys. Consequently, we showed the attack equation
for a six round MISTY1 with FL functions and the effective algorithm to deter-
mine a 128-bit secret key. Our algorithm needs 218.9 chosen plaintexts and 280.6

computational cost. Since our target, reduced round MISTY1, has FL functions
in the last round, our algorithm is more realistic and powerful than the exist-
ing methods. Although it may be unfair to compare only the number of rounds
and the number of chosen plaintexts, our algorithm can attack more rounds
using less number of chosen plaintexts than Knudsen and Wagner’s integral
cryptanalysis.

We also succeeded in attacking MISTY1 with no FL functions that has more
rounds than the model attacked previously. We presented a novel technique to
control the value of fixed part of plaintext. Since the order of S-boxes is very small
and unknown terms are very few, the algebraic method works very efficiently.
The 2-round elimination method works because the complexity needed by the
algebraic method in the procedure of solving the attack equation is very small.
Our algorithm needs 211.9 chosen plaintexts and 2125.1 computational cost, and
is superior to the previous ones, in the sense that it can attack more rounds with
fewer chosen plaintexts.

We summarize our results and the related works in table 2.

226 H. Tanaka et al.

Acknowledgements

We would like to thank Ms. Makiko Shirota for her contribution to the computer
simulations.

References

1. Babbage, S., Frisch, L.: On MISTY1 Higher Order Differential Cryptanalysis. In:
Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 22–36. Springer, Heidelberg (2001)

2. Knudsenand, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen,
V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 114–129. Springer, Heidelberg (2002)

3. Jakobsen, T., Knudsen, L.R.: The Interpolation Attack on Block Cipher. In:
Preneel, B. (ed.) Fast Software Encryption. LNCS, vol. 1008, pp. 28–40. Springer,
Heidelberg (1995)

4. Kühn, U.: Cryptanalysis of Reduced-Round MISTY. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 325–339. Springer, Heidelberg (2001)

5. Kühn, U.: Improved Cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 61–75. Springer, Heidelberg (2002)

6. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

7. Moriai, S., Shimoyama, T., Kaneko, T.: Higher Order Differential Attack of a CAST
Cipher. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 17–31. Springer,
Heidelberg (1998)

8. NESSIE, https://www.cosic.esat.kuleuven.ac.be/nessie/
9. RFC2994, http://www.faqs.org/rfcs/rfc2994.html

10. 3GPP, http://www.3gpp.org/

https://www.cosic.esat.kuleuven.ac.be/nessie/
http://www.faqs.org/rfcs/rfc2994.html
http://www.3gpp.org/

A Generic Method for Secure SBox

Implementation

Emmanuel Prouff2 and Matthieu Rivain1,2

1 University of Luxembourg
Faculty of Sciences, Technology and Communication

6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg

2 Oberthur Card Systems,
71-73 rue des Hautes Pâtures,
92726 Nanterre Cedex, France

{m.rivain,e.prouff}@oberthurcs.com

Abstract. Cryptographic algorithms embedded in low resource devices
are vulnerable to side channel attacks. Since their introduction in 1996,
the effectiveness of these attacks has been highly improved and many
countermeasures have been invalidated. It was especially true for coun-
termeasures whose security was based on heuristics and experiments.
Consequently, there is not only a need for designing new and various
countermeasures, but it is also necessary to prove the security of the new
proposals in formal models. In this paper we provide a simple method for
securing the software implementation of functions called SBoxes that are
widely used in symmetric cryptosystems. The main advantage of the pro-
posed solution is that it does not require any RAM allocation. We analyze
its efficiency and we compare it with other well-known countermeasures.
Moreover, we use a recently introduced proof-of-security framework to
demonstrate the resistance of our countermeasure from the viewpoint of
Differential Power Analysis. Finally, we apply our method to protect the
AES implementation and we show that the performances are suitable for
practical implementations.

1 Introduction and Motivations

Side Channel Analysis are powerful attacks that utilize side channel leakage of
embedded devices such as timing execution or power consumption to obtain in-
formation about secret data. It essentially allows two kinds of Power Attacks:
the Simple Power Analysis (SPA) and the Differential Power Analysis (DPA).
SPA consists in directly interpreting power consumption measurements and in
identifying the execution sequence. In a DPA, the attacker focuses on the power
consumption of a single instruction and performs statistical tests to reveal some
correlations between the distribution of the measurement values and the sensi-
tive data (i.e. depending on a secret value) manipulated by the instruction. Since
the publication of the first DPA, many papers describing either countermeasures
or attack improvements have been published (see [1,3,4,12] for example). Among

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 227–244, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

228 E. Prouff and M. Rivain

these improvements, Higher order DPA attacks (HODPA) are of particular in-
terest. They extend the DPA by considering a set of several instructions instead
of a single one. The number d of instructions targeted by the attack is called
order of the DPA.

The most common way of thwarting DPA involves random values (called
masks) to de-correlate the leakage signal from the sensitive data which are ma-
nipulated [4, 6, 1]. If every sensitive variable is protected with a single mask,
the implementation may thwart first order DPA but it can be theoretically at-
tacked by a second order DPA targeting both the mask and the masked value. To
thwart second order DPA (and more generally d-th order DPA), every sensitive
variable must be masked with 2 (resp. d) random values. This implies that the
timing-memory cost of the existing masking countermeasures increases greatly
with the order of the DPA they aim to counteract. For applications where time
constraints are very strong (such as contact-less applications), it may be consid-
ered as sufficient to mask all the sensitive data with a small number of random
values generated at the beginning of the algorithm execution. The performances
of many DPA countermeasures have been studied in this model. However re-
cent results (see [13]) showed that second order DPA represents a real practical
threat, especially when the same value is used to mask several intermediate re-
sults throughout the algorithm. Therefore, as noticed in [5, 15], the masks must
be re-generated as often as possible and the analysis of the efficiency of a coun-
termeasure has to take this fact into account. In this model, it appears that only
a few among the existing countermeasures are still efficient in a low resource
context and there is therefore still a need for investigating new and various
countermeasures that thwart first order DPA efficiently when the masks change
frequently.

Due to the very large variety of Side Channel Attacks reported against cryp-
tosystems and devices, sensitive applications (e.g. Banking, GSM or Identity
Card) cannot make use of countermeasures with ad hoc security but need coun-
termeasures which are provably secure against a precisely modeled adversary.
Recently, new notions and tools have been introduced to evaluate the security of
an implementation against Side Channel Attacks [20,18,17]. They allow for the
formal validation or the formal invalidation of the resistance of a countermeasure
under some realistic assumptions on the behavior of the device and on the power
of the adversary.

In this paper, we focus on DPA against block cipher algorithms. The most
critical part when securing implementations of such algorithms against DPA is
to protect their non-linear operations (i.e. the calls to the SBoxes). In the next
section, we recall the methods which have been proposed in the Literature. Then,
we introduce in Sect. 3 a new and simple countermeasure which counteracts first
order DPA against SBox implementations whatever the algebraic structure of
the SBox. When the masks change frequently, we argue that the new method
has a good efficiency compared to the other generic methods. In Sect. 4, we
analyze the security of our proposal by following the methodology described
in [20]. In Appendix A, we apply our method to protect the implementation of

A Generic Method for Secure SBox Implementation 229

the AES SBox and we compare its efficiency and its security with the ones of
other existing countermeasures.

2 Secure Implementation of Non-linear Functions in the
Literature

2.1 State of the Art of the Generic Methods

To counteract DPA attacks, one usually tries to make the power consumption
signal as independent as possible of the sensitive data manipulated by the al-
gorithm. Goubin and Patarin proposed in [6] a general solution, called duplica-
tion method, to protect the implementation of an algorithm. In this approach,
every sensitive variable x is split into d blocks r1, ..., rd and every crypto-
graphic primitive F that manipulates x is associated to d functions F1, ..., Fd

and to a simple transformation σ (e.g. a simple bitwise addition) such that
F (x) = σ(F1[r1, ..., rd], · · · , Fd[r1, ..., rd]). Goubin and Patarin showed that an
implementation protected by duplication method thwarts first order DPA if
for every x (resp. every F [x]) the d blocks r1, ..., rd (resp. F1[r1, ..., rd], ... ,
Fd[r1, ..., rd]) are never manipulated at the same time.

Another approach consists in masking all the sensitive internal data with
random values. Depending on the kind of operations performed by the linear
parts of the algorithm, the mask values are introduced by modular addition,
bitwise addition or multiplication. After selecting the masking operation �, the
implementation of a cryptographic function F is rendered resistant to first order
DPA by solving the following problem:

Problem 1. Knowing x � r, r and s, compute F (x) � s such that every value of
the power consumption signal is independent of x.

If the function F is linear for the law �, then solving the above problem is a simple
task. Indeed, since F (x�r) equals F (x)�F (r), we have F (x)�s = F (x�r)�F (r)�s.
If F is non-linear for the law � (which is the case when F is a SBox), then
designing an implementation solving Problem 1 is much more difficult. Several
kinds of methods have been proposed in the Literature and we recall two of them
hereafter.

The first one, called re-computation method [1, 11], involves the computation
of a table corresponding to the masked SBox and the generation of one or several
random value(s). In its most elementary version, two random values r and s are
generated and the table T � representing the function F � : x �→ F (x � r) � s is
computed from F and stored in the RAM of the device. Then, each time the
masked value F [x]� s has to be computed from the masked input x� r, the table
T � is accessed. For such a method, the number of tables to be recomputed during
the execution of the algorithm equals the number of different input/output masks
which is allowed.

Remark 1. The re-computation method is a particular case of the duplication
method where d equals 2, where the sensitive value x is split into r1 = x � r

230 E. Prouff and M. Rivain

and r2 = r and where the functions F1 and F2 equal r1 �→ S[r1] � s and r2 �→ s
respectively.

The second kind of methods, that we call here SBox secure calculation, has
been essentially applied to protect AES implementations [4, 7, 18, 19, 21] due
to the strong algebraic structure of the AES SBox. The SBox outputs are not
directly obtained by accessing a table but are computed on-the-fly by using a
mathematical representation F of the SBox. Then, each time the masked value
F [x] � s must be computed from the pair (x � r, r), an algorithm performing F
and parameterized by the 3-tuple (x � r, r, s) is executed. The computation of
F is split into elementary operations (bitwise addition, bitwise multiplication,
addition, multiplication, ...) and/or is performed in spaces of small dimensions
(e.g. 4) by accessing one or several look-up table(s) (see [15]). The security of
such a method is achieved by protecting each elementary operation and each
memory transfer.

When the same pair of input/output masks is used throughout the algorithm,
the latter is said to be protected in the single-mask protection mode. In such
a mode, a new pair of input/output masks (r, s) is generated at each execu-
tion of the algorithm and every computation F (x) performed during the execu-
tion is protected with this single pair. When the algorithm is protected in this
mode, SBox secure calculation methods are often much more costly than the
re-computation methods since they essentially replace a single access to a table
by numerous logical operations and memory transfers. This difference between
the performances of the two methods decreases when the number of different
masks generated to protect the SBox calculations increases. In the multi-mask
protection mode, the pair of masks (r, s) is re-generated each time a calculation
F (x) must be protected (and thus many times per algorithm execution). In such
a context, the SBox secure calculation methods become more appropriate and
induce a smaller timing/memory overhead than the re-computation methods.
Indeed, when re-computation methods are used in the multi-mask protection
mode, a new table must be computed from F after each re-generation of masks
(i.e. before every computation F (x)).

As discussed in the previous paragraph, the choice between the first and the
second category of methods highly depends on the protection mode, single-mask
or multi-mask, in which the algorithm is implemented. We compare the two
modes in the next section.

2.2 Single-Mask Protection Mode versus Multi-mask Protection
Mode

When it is only required to thwart first order DPA, then implementing the al-
gorithm in the single mask protection mode is sufficient. However recent results
(e.g. [13]) show that second order DPA can represent a real practical threat
when the amount of information leaking in the two consumption points targeted
by the attacker is sufficiently high to make the effects of the de-synchronization
and of the noise negligible. More generally, the analyses of second order DPA

A Generic Method for Secure SBox Implementation 231

published in [8,13,23] illustrate that the complexities of the various second order
DPA are very different and show that some of them must be considered when im-
plementing an algorithm for secure applications. In fact, as already put forward
in [5,15], second order DPA are especially effective when the same pair of masks
is used to protect all the inputs/outputs of the cryptographic primitives (e.g. all
the inputs/outputs (x, F (x)) of the SBoxes) involved in the algorithm. Indeed,
the beginning and the end dates of the execution of these primitives are quite
easy to localize in the power consumption curves. Consequently, when all the
inputs (resp. all the outputs) of the primitives are masked with the same value,
then an attacker can precisely isolate two consumption points manipulating the
same masks and is therefore able to unmask a sensitive data. A straightforward
solution to make this particular class of second order DPA difficult to perform
in practice consists in re-generating the masks as often as possible. Even if such
a solution does not ensure that the algorithm thwarts all kinds of second order
DPA, it allows to counteract those among the most efficient ones.

For the reasons detailed above, we think that there is a practical interest to in-
troduce an intermediate resistance level between the first order DPA-resistance,
in which every first order DPA is counteracted, and the second order DPA-
resistance, in which every second order DPA is also counteracted. We call this
intermediate level, first order DPA-resistance in the multi-mask protection mode.
In this new level, the pair of masks (r, s) is re-generated each time a calculation
F (x) must be protected (and thus many times per algorithm execution). Since
the implementation of an algorithm perfectly thwarting second-order DPA re-
quires a great timing and memory overhead and since an implementation thwart-
ing only first order DPA does no longer provide enough security, we think that
the first order DPA-resistance in the multi-mask protection mode nowadays offers
the better security/efficiency trade-off.

Analyzing the security of an implementation of an SBox for the new resistance
level is equivalent to study the first order DPA resistance of the SBox implemen-
tation. The difference appears when it comes to investigate the efficiency of the
countermeasure. For instance, a technic efficient in the single-mask mode (e.g.
the re-computation method) can become much more costly in the multi-mask
mode.

In the next section, we present a simple SBox secure calculation method which
resolves Problem 1 and we compare its performances with other generic methods
in the multi-mask protection mode.

3 The New S-Box Secure Calculation Method

3.1 Our Proposal

Let x denote a sensitive variable, let r and s be an input mask and an output
mask and let F denote an SBox function mapping F

n
2 into F

m
2 . The core idea

of our proposal is to compute F ((x ⊕ r) ⊕ a) ⊕ s for every value a, storing the
result in a register R0 if a equals r and in a second register R1 otherwise.

232 E. Prouff and M. Rivain

Let compare : x, y �→ compare(x, y) be the function returning 0 if x = y and
1 otherwise, we depict our proposal in the following algorithm.

Algorithm 1. Computation of a masked S-Box output from a masked input
Input: a masked value x̃ = x⊕ r, an input mask r, an output mask s, a look-up table
for F
Output: the masked S-Box output F (x)⊕ s

1. for a = 0 to 2n − 1 do

2. cmp← compare(a, r)

3. Rcmp ← F (x̃⊕ a)⊕ s

4. return R0

Remark 2. Many microprocessors implement the function compare by a single
instruction. Thus, we will assume in the rest of the paper that this function is
an elementary operation.

To verify the correctness of Algorithm 1., it can be checked that Step 3 performs
the following operation:

{

R0 ← F (x̃⊕ a)⊕ s if a = r ,
R1 ← F (x̃⊕ a)⊕ s otherwise . (1)

Hence, R0 contains the value F (x̃⊕r)⊕s = F (x)⊕s when the loop is completed.
The security of the new method highly depends on the assumption that the

leakage generated by a register transfer is the same whatever is the register. This
assumption is commonly accepted and it is the security core of SPA countermea-
sures used to protect asymmetric cryptosystems (see for instance [9]).

As every variable manipulated during the execution of the algorithm is masked
by a random value, it can be proven (in a similar way as done in Sect. 4) that
it thwarts DPA in both Hamming Weight and Hamming Distance models. Nev-
ertheless, Algorithm 1. has a potential security weakness because it involves
dummy operations (i.e. operations which do not impact the value returned by
the algorithm)3. This flaw could be exploited by an attacker who would disrupt
the Step 3 operation (for instance by fault injection [2]) during a chosen loop
iteration a = a0. By checking if Algorithm 1. output is erroneous or not, the
attacker would be able to detect when the mask r equals the known loop index
a0. Finally, for the power consumption measurements corresponding to the cases
r = a0, the attacker would be able to unmask x̃ and to perform a classical first
order DPA.

To circumvent the flaw, dummy operations must be avoided. When F is bal-
anced 4, i.e. when #F−1(y) equals 2n−m for every y ∈ F

m
2 , then we propose in

3 Attacks exploiting dummy operations have been mainly applied to attack SPA-
resistant implementations of RSA (see [24] for an example of such attacks).

4 For security reasons, functions F involved in cryptographic applications are always
balanced.

A Generic Method for Secure SBox Implementation 233

Algorithm 2. Computation of a masked S-Box output from a masked input
Input: a masked value x̃ = x⊕ r, an input mask r, an output mask s, a look-up table
for F
Output: the masked S-Box output F (x)⊕ s

1. R0 ← s

2. R1 ← s

3. for a = 0 to 2n − 1 do

4. cmp← compare(a, r)

5. Rcmp ← Rcmp ⊕ F (x̃⊕ a)

6. cmp← compare(R0, R1)

7. return R0 ⊕ (cmp×R1)

the following a slightly modified version of Algorithm 1. where both registers R0

and R1 are involved in the computation of the output value.
According to (1), register R0 contains the value F (x) ⊕ s at the end of the

loop. Moreover it can be checked that the content of R1 equals s⊕⊕

a∈Fn
2

a�=r

F (x̃⊕
a). As F is balanced, the summation

⊕

a∈Fn
2

a�=r

F (x̃ ⊕ a) equals F (x̃ ⊕ r) that

is F (x) since we have x̃ = x ⊕ r. Indeed, the summation
⊕

a∈F
n
2
F (x) can be

rewritten
⊕

y∈F
m
2

(
⊕

a∈F
n
2 ; F (a)=y y). As F is assumed to be balanced, each term

⊕

a∈F
n
2 ; F (a)=y y corresponds to 2n−m times the sum of the vector y with itself.

Thus, each term
⊕

a∈F
n
2 ; F (a)=y y equals the null vector if n > m and equals y if

n = m. This implies that
⊕

a∈F
n
2
F (a) equals 0 if n > m and equals

⊕

y∈F
m
2
y if

n = m. Since the sum of all the elements of a space equals the zero vector, one
deduces that

⊕

a∈F
n
2
F (a) is also equal to 0 if n and m are equal. Consequently,

when F is balanced, the equality R1 = s⊕F (x̃⊕ r) = F (x)⊕ s holds at the end
of the loop.

Finally, Step 6 aims at verifying that the contents of the two registers R0 and
R1 are equal. Then, Step 7 returns either the expected result if no perturbation
occurred or an erroneous result otherwise. This simple improvement of Algorithm
1. ensures that the attacker is no longer able to determine when the index a0 of
the targeted loop iteration equals the input mask r.

Algorithm 1. requires 2n× 3 logical operations (2 x-or operations and 1 com-
parison per loop iteration) and 2n memory transfers (1 table look-up per loop
operation). For Algorithm 2., two assignments (Steps 1 and 2), one comparison
(Step 6), one multiplication and one x-or operation (Step 7) are added.

Since changing the input and output masks at each execution of Algorithm 2.
has no impact on its performances, our proposal is efficient in the multi-mask
protection mode. Moreover, it is generic in the sense that it can be applied to
any balanced SBox F without any assumption on the algebraic structure of F .
In what follows, we compare the performances of our proposal with the ones of
other generic methods.

234 E. Prouff and M. Rivain

3.2 Comparison with Other Generic Methods

We focus here on two well-known elementary masked SBox computation meth-
ods. The first one is the table re-computation method recalled in Sect. 2. The
second one, that we call here the global look-up table method, uses a large look-up
table addressed with the mask and the masked value.

Re-computation method. Let T denote a 2n bytes table allocated in RAM5.
When the block cipher algorithm is protected in the multi-mask protection mode,
a new pair of input/output masks is generated each time an SBox output is
computed and the following sequence of operations is performed:

1. for x = 0 to 2n − 1 do
2. T [x]← F (x ⊕ r)⊕ s
3. return T [x̃]

This algorithm requires 2n × 2 logical operations (2 x-or operations per loop
iteration) and 2n×2+1 memory transfers (1 read operation and 1 write operation
per loop iteration and one access to the re-computed table). The computational
cost of the table re-computation method is approximatively the same as for
Algorithm 2.. However, it also requires the allocation of 2n bytes of RAM which
can be problematic in a low resource context, especially when several SBoxes
need to be protected.

Global look-up table method. Let T � denote the look-up table associated
to the function (x, y) �→ F (x ⊕ y) ⊕ y. To compute F (x) ⊕ r from x ⊕ r and r,
the global look-up table method performs a single operation: the table look-up
T �[x̃, r]. Its timing performances are ideal since it requires only one memory
transfer. However, the size 22n of the look-up table T � makes an application of
the method difficult in a low resource context. For instance, if n is greater than
or equal to 7, the amount of ROM required is definitively too great (at least 16
KB!). When n is lower than or equal to 6, the feasibility of the method depends
on the amount of ROM of the device and on the number of different SBoxes
which must be protected. The method can become interesting when it comes to
protect SBoxes mapping F

4
2 into itself (as it is the case for FOX [10] where three

such SBoxes are involved) or when the SBox calculus can be performed in spaces
of dimensions lower than or equal to 4 (as it is the case for the AES SBox - see
Appendix A -).

From a security point of view, the global look-up table method has a flaw since
it manipulates the mask r and the masked data x̃ at the same time. Indeed x̃
and r are concatenated to address the look-up table T � and thus, the value x̃||r
is transferred through the bus. Since the variables x̃||r and x are statistically
dependent, the leakage on x̃||r is potentially exploitable by a first order DPA.

5 To make the description easier, we assume that every element of F
m
2 is stored on one

byte.

A Generic Method for Secure SBox Implementation 235

Table 1. Comparison of methods solving Problem 1 for the bitwise addition

Method Masking Mode Pre-computation SBox calculation RAM ROM

Table recomp. Single-masking 2n+1MT + 2n+1RLO 1MT 2n 2n

Table recomp. Multi-masking 0 (2n+1 + 1)MT + 2n+1RLO 2n 2n

Global LUT Multi-masking 0 1MT 0 22n

Algo. 2. Multi-masking 0 2nMT + (3× 2n + 5)RLO 0 2n

Table 1 summarizes the costs of the three previously considered methods
according to the number of register logical operations (RLO), the number of
memory transfers (MT), the memory size (bytes in RAM) and the code size
(bytes in ROM).

4 Security Analysis

To study the security of our proposal we will use some basic notions of informa-
tion Theory. We recall them in the next section.

4.1 Preliminaries

We use the calligraphic letters, like X , to denote finite sets. The correspond-
ing large letter X is then used to denote a random variable over X , while the
lowercase letter x - a particular element from X . The probability of the event
(X = x) is denoted P[X = x]. The entropy H(X) of a random variable X aims
at measuring the amount of information provided by an observation of X and
satisfies H(X) = −∑

x∈X P[X = x] log(P[X = x]). The conditional entropy of
X given Y , denoted by H(X |Y), equals −∑

y∈Y P[Y = y]
∑

x∈X P [X = x|Y =
y] log(P [X = x|Y = y]). To quantify the amount of information that Y reveals
about X , the notion of mutual information is usually involved. The mutual infor-
mation of X and Y is the value I(X,Y) defined by I(X,Y) = H(X)−H(X |Y).
The random variables X and Y are independent if and only if I(X,Y) equals 0.
Moreover, the mutual information is always positive or null and it satisfies the
following property.

Property 1. Let X and Y be two random variables respectively defined over X
and Y. For every function f defined over Y, we have I(X, f(Y)) ≤ I(X,Y).

For our security analysis, we shall also use the following proposition.

Proposition 1. Let X and Y be two random variables defined over X and let
Z be a random variable defined over Z. If Z is mutually independent of X and
Y and has a uniform distribution over Z, then for every measurable function f
defined from X 2 into Z, we have I(X,Z ⊕ f(X,Y)) = 0.

As a consequence of Proposition 1, we have I(X,Z ⊕ X) = 0 when X and Z
satisfy the conditions of Proposition 1.

236 E. Prouff and M. Rivain

4.2 Evaluation Methodology

To evaluate the security of our proposal, we follow the outlines of the method-
ology depicted in [20]. This methodology holds in five steps: specify the target
implementation, specify the target secret, define the adversary model, evaluate
the information leakage and define a metric to evaluate the security.

The target implementation is Algorithm 2. running on a smart card.

The target secret is the un-masked value x corresponding to the masked input
x̃ of Algorithm 2..

The adversary model. We assume that the attacker can query the targeted
cryptographic primitive with an arbitrary number of plaintexts and obtain the
corresponding physical observations, but cannot choose its queries in function of
the previously obtained observations (such a model is called non-adaptive known
plaintext model in [20]). We also assume that the attacker has access to the power
consumption and electromagnetic emanations of the device and applies a first
order DPA attack but is not able to perform HODPA.

The effectiveness of the prediction made by the adversary is strongly related
to the amount of information provided by the physical observations. In our anal-
ysis, we assume that the attacker knows how information leaks from the device
and straightforwardly makes its prediction based on the leakage model (such
a prediction is called device profiled prediction in [20]). Moreover, the physical
observations are assumed to be perfect i.e. matching exactly the leakage model
(which is a very favorable situation from the attacker’s viewpoint).

For our analysis, we choose to consider a general leakage model that can be
used for both power consumption or electromagnetic emanations.

The leakage model. Different models coexist to quantify the leakage of CMOS
circuits with respect to the data handled but two of them are predominantly
used: the Hamming Weight model (where the leakage is related to the Ham-
ming Weight of the data handled) and the Hamming Distance model (where
the leakage is related to the Hamming Distance between the previous and the
current data handled in a register or transmitted through a bus - see [3]). In the
Hamming Distance model, the leakage of the bit-transitions 0 → 1 and 1 → 0
are assumed to be equal, which makes the leakage analysis much simpler. How-
ever this assumption, which is adequate when trying to attack an unprotected
implementation, is not relevant to model a strong opponent against a secure
implementation. Indeed, in practice CMOS gates leak differently when charging
or discharging the load capacitance (especially in the case of electromagnetic
emanations [17]). Hence, as mentioned in [17,20], a more accurate leakage model
must be defined to model an attacker who is able to observe these differences.

A Generic Method for Secure SBox Implementation 237

Definition 1. [17] In the Hamming Distance Extended (HDE) model, the leak-
age LHDE(s, y) related to a variable y that replaces an initial state s, satisfies

LHDE(s, y) = N0→1(s, y)× P0→1 +N1→0(s, y)× P1→0 + β , (2)

where N0→1(s, y) (resp. N1→0(s, y)) denotes the number of transitions 0 → 1
(resp. 1 → 0) from s to y, P0→1 (resp.P1→0) denotes the average energy con-
sumed by a transition 0→ 1 (resp. 1→ 0) and where β denotes some noise.

Denoting by δ the normalized difference P0→1−P1→0
P0→1

and by ε the leakage P0→1,
we have P1→0 = ε(1− δ) and Relation (2) can be rewritten:

LHDE(s, y) = ε

(

1− δ

2

)

HW(s⊕ y) + ε
δ

2
(HW(y)−HW(s)) + β . (3)

From Relation (3), it can be verified that the HDE model includes the Ham-
ming Weight (HW) and the Hamming Distance (HD) models. Indeed, when
there is no difference between the transitions 0 → 1 and 1 → 0 (i.e. when
δ = 0), we have LHDE(s, y) = εHW (s⊕ y) + β and the HDE model is equiva-
lent to the HD model. On the other hand, when the initial state s is constant,
equal to 0, then we have LHDE(s, y) = εHW (y) + β and the HDE model is
equivalent to the HW model. The HDE model is also appropriate to quantify
electro-magnetic emanations leaking in the signed distance model which assumes
that P1→0 equals −P0→1 [17]. In this case, we have δ = 2 and the leakage satisfies
LHDE(s, y) = ε(HW (y)−HW (s)) + β.

Once the behavior of the device and the attacker capacities are modeled, a
method can be deduced from Standaert et al. [20] to prove the security of a
countermeasure.

Evaluation of the security. Let us denote by X , Y and IS the random vari-
ables respectively corresponding to the sensitive data targeted by the attacker,
the data manipulated at the date of a leakage and the initial state replaced by
Y . In the theoretical model depicted by the four steps above, it has been proved
in [18] and [20] that a first order DPA does not succeed in extracting informa-
tion about X if and only if X and LHDE(IS, Y) are independent for every pair
(IS, Y) appearing during the execution of the algorithm.

In the following section, we evaluate I(X,LHDE(IS, Y)) for every pair (IS, Y)
appearing during the execution of Algorithm 2..

4.3 Proof of Security

If IS is an operation code, a constant memory address or a system variable
which is independent of the intermediate results of the algorithm, then Property
1 and the positivity of the mutual information imply the following inequality:

0 ≤ I(X,LHDE(IS, Y)) ≤ I(X,Y) . (4)

In such a case, proving I(X,Y)=0 is sufficient to prove I(X,LHDE(IS, Y))=0.

238 E. Prouff and M. Rivain

If IS corresponds to an intermediate result of the algorithm, then Property 1
and the positivity of the mutual information imply the following inequality:

0 ≤ I(X,LHDE(IS, Y)) ≤ I(X, (IS, Y)) , (5)

where (IS, Y) denotes the random variable that has the joint distribution of IS
and Y . In this case, proving that I(X, (IS, Y)) equals 0 is sufficient to prove
that I(X,LHDE(IS, Y)) equals 0.

To show that I(X,LHDE(IS, Y)) equals 0 for every pair (IS, Y) appearing
during the execution of Algorithm 2., we decompose our security proof into
two steps, depending on the nature of IS. In a first step, we show that for
every intermediate variable Y manipulated by Algorithm 2., the mutual infor-
mation I(X,Y) equals 0. According to Inequality (4), this will prove that X
and LHDE(IS, Y) are independent when IS is assumed to be an operation code,
a constant memory address or a system variable: we shall say in this case that
there is no variables leakage. In a second time, we show that for every transition
occurring between two intermediate results Y1 and Y2, the mutual information
I(X, (Y1, Y2)) equals 0. According to Inequality (5), this will prove that X and
LHDE(IS, Y) are independent when IS corresponds to an intermediate result
of the algorithm: we shall say in this case that there is no transitions leakage.

Variables leakage. We decompose Algorithm 2. into several elementary op-
erations each manipulating an intermediate result computed from the sensitive
variable X , the input mask R and the output mask S. Since the random vari-
ables R and S correspond to randomly generated values, we can assume that
they have a uniform distribution and thatX , R and S are mutually independent.

Let suma(X,R) denotes the sum
⊕a

j=0
j �=R

F (X ⊕ R ⊕ j) and let tmp denote
the register used to store the intermediate results at Step 5. Table 2 lists the
intermediate values that occur during an execution of Algorithm 2.

As R and S have a uniform distribution and as X , R and S are mutually
independent, one straightforwardly deduces from Proposition 1 that all the in-
termediate results listed in Table 2 are independent of X .

Table 2. Intermediate results manipulated during Algorithm 2

Step Instruction Intermediate results

5. tmp← x̃ X ⊕ R

tmp← tmp⊕ a X ⊕ R ⊕ a

tmp← F (tmp) F (X ⊕ R ⊕ a)

Rcmp ← Rcmp ⊕ tmp S ⊕
{

0 if R = a

suma−1(X, R) otherwise

S ⊕
{

F (X) if R = a

suma(X, R) otherwise

6. cmp← compare(R0, R1) F (X)⊕ S

7. return R0 ⊕ (cmp× R1) F (X)⊕ S

A Generic Method for Secure SBox Implementation 239

Table 3. Transitions between intermediate results occurring during Algorithm 2

Step Operation Target Initial State IS New State Y

5 tmp ← x̃ tmp F (X ⊕ R ⊕ (a − 1)) X ⊕ R

5 tmp ← tmp ⊕ a tmp X ⊕ R X ⊕ R⊕ a

5 tmp ← F (tmp) A-BUS adF + (X ⊕ R⊕ (a − 1)) adF + (X ⊕ R⊕ a)

5 tmp ← F (tmp) D-BUS F (X ⊕ R ⊕ (a − 1)) F (X ⊕ R ⊕ a)

5 tmp ← F (tmp) S-BUS F (X ⊕ R ⊕ (a − 1)) adF + (X ⊕ R⊕ a)

5 tmp ← F (tmp) S-BUS adF + (X ⊕ R ⊕ a) F (X ⊕ R ⊕ a)

5 tmp ← F (tmp) tmp X ⊕ R ⊕ a F (X ⊕ R ⊕ a)

5 Rcmp ← Rcmp ⊕ tmp Rcmp S ⊕
⎧

⎨

⎩

0 if R = a

suma−1(X, R) otherwise
S ⊕

⎧

⎨

⎩

F (X) if R = a

suma(X, R) otherwise

7 R1 ← R1 ⊕ cmp cmp F (X ⊕ S) F (X ⊕ S)

Transitions leakage. We consider hereafter the transitions between intermedi-
ate results that occur either on the bus or in the registers R0, R1, cmp and tmp.
For the bus, we consider transitions that appear when memory addresses and
data transit either on the same bus (here denoted S-BUS for single bus) or on
different bus (an address bus denoted A-BUS and a data bus denoted D-BUS).

Let adF denote the memory address of the look-up table F . In Table 3, we
list the successive bus or register transitions occurring during an execution of
Algorithm 2.. We only list the transitions involving the sensitive data X .

For all except the fifth row of Table 3, Proposition 1 and Property 1 straight-
forwardly imply that I(X, (IS, Y)) equals 0. For the fifth row, which corresponds
to the update of Rcmp, let us study (IS, Y) for R = a and R �= a. If R equals a,
then (IS, Y) can be written (S, S⊕F (X⊕R⊕a)) where S is uniformly distributed
over F

m
2 and is independent of the pair (X,R). If R differs from a, then (IS, Y)

can be written (S⊕suma−1(X,R), S⊕suma(X,R)) that is (S′, S′⊕F (X⊕R⊕a))
after denoting S⊕ suma−1(X,R) by S′. It can be verified that S′ has a uniform
distribution over F

m
2 . Thus, due to Proposition 1, S′ is independent of (X,R).

One deduces that (IS, Y) is equivalent to a random variable (U,U⊕F (X⊕R⊕a))
where U is uniformly distributed over F

m
2 and independent of the pair (X,R).

Then, from Property 1, we get I(X, (IS, Y)) ≤ I(X, (U,X⊕R)) and Proposition
1 implies that I(X, (IS, Y)) equals 0.

We showed in this section that the sensitive variable X is independent of
every intermediate result Y and every transition IS → Y that occurs during the
execution of Algorithm 2.. As argued in Sect. 4.2, this implies that there is no
mutual information between the sensitive variable and the instantaneous power
consumption leakages. We can therefore conclude that Algorithm 2. is secure
against first order DPA in the HDE model.

5 Conclusion

In this paper we have presented a new masking scheme for software SBox im-
plementations that requires no RAM allocation. Since our method does not rely
on specific SBox properties, it is generic and can thus be applied to protect any
symmetric cryptosystem. We have argued that a first order DPA countermeasure

240 E. Prouff and M. Rivain

must be efficient not only in the single-mask protection mode but also in the
multi-mask mode. In this mode, we have shown that our countermeasure is as
efficient as the other classical generic methods and does not require RAM alloca-
tion. We have evaluated our solution within the framework recently introduced
by Standaert et al. in [17,20], proving its security against first order DPA under
realistic assumptions about the attacker and the device behaviors. Finally, we
have applied our method to AES and we have compared its efficiency with other
secure implementations. Based on this analysis, we think that the timing and
memory overhead of our countermeasure are suitable for practical implementa-
tions of the AES algorithm when a protection in multi-mask protection mode is
required.

Acknowledgements

We would like to thank Christophe Giraud and Emmanuelle Dottax for their
fruitful comments and suggestions on this paper.

References

1. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

2. Boneh, D., DeMillo, R., Lipton, R.: On the Importance of Eliminating Errors in
Cryptographic Computations. Journal of Cryptology 14(2), 101–119 (2001)

3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract
Power-Analysis Attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

5. Golić, J., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

6. Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

7. Gueron, S., Parzanchevsky, O., Zuk, O.: Masked Inversion in GF(2n) Using Mixed
Field Representations and its Efficient Implementation for AES. In: Embedded
Cryptographic Hardware: Methodologies and Architectures, pp. 213–228. Nova Sci-
ence Publishers (2004)

8. Joye, M., Paillier, P., Schoenmakers, B.: On Second-Order Differential Power Anal-
ysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308.
Springer, Heidelberg (2005)

9. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

A Generic Method for Secure SBox Implementation 241

10. Junod, P., Vaudenay, S.: FOX: a new family of block ciphers. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, Heidelberg
(2004)

11. Messerges, T.: Securing the AES Finalists Against Power Analysis Attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

12. Messerges, T.: Using Second-Order Power Analysis to Attack DPA Resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

13. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical Second-Order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, Springer, Heidelberg (2006)

14. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

15. Oswald, E., Schramm, K.: An Efficient Masking Scheme for AES Software Imple-
mentations. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786,
pp. 292–305. Springer, Heidelberg (2006)

16. Oswald, E.: Stefan, and N. Pramstaller. Secure and Efficient Masking of AES – A
Mission Impossible? Cryptology ePrint Archive, Report 2004/134 (2004)

17. Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Power and Electromagnetic Anal-
ysis: Improved Model, Consequences and Comparisons. In Integration, the VLSI
Journal. Elsevier, Spring (to appear)

18. Prouff, E., Giraud, C., Aumonier, S.: Provably Secure S-Box Implementation Based
on Fourier Transform. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 216–230. Springer, Heidelberg (2006)

19. Rudra, A., Bubey, P.K., Jutla, C.S., Kumar, V., Rao, J., Rohatgi, P.: Efficient
Rijndael Encryption Implementation with Composite Field Arithmetic. In: Koç,
Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184.
Springer, Heidelberg (2001)

20. Standaert, F.-X., Malkin, T.G., Yung, M.: Side-Channel Resistant Ciphers: Model,
Analysis and Design. Cryptology ePrint Archive, Report 2006/139 (2006)

21. Trichina, E.: Combinatorial Logic Design for AES SubByte Transformation on
Masked Data. Cryptology ePrint Archive, Report 2003/236 (2003)

22. Trichina, E., Korkishko, L.: Secure and Efficient AES Software Implementation for
Smart Cards. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp.
425–439. Springer, Heidelberg (2005)

23. Waddle, J., Wagner, D.: Toward Efficient Second-order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

24. Yen, S.-M., Joye, M.: Checking before output may not be enough against fault-
based cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

A Application to AES

We recall that the AES SBox is composed of two parts: a non-linear function
and an affine mapping. In the following we focus on the non-linear part, which
will be denoted here by F . Let p(x) denotes the irreducible polynomial x8⊕x4⊕

242 E. Prouff and M. Rivain

x3 ⊕ x⊕ 1 ∈ F2[x]. The function F is defined in F2[x]/p(x) by F (a) = 0 if a = 0
and by F (a) = a−1 otherwise.

At first, we applied the method depicted in Algorithm 2. for n = 8 to pro-
tect the SBox access of the AES algorithm. We implemented the solution on a
classical 8051 chip running at 8 Mhz and we studied the performances of the
implementation. Clearly, the timing of the resulting AES algorithm was not
interesting (around 115 ms and 1, 8 KB of ROM) compared to 5ms for an im-
plementation without countermeasures.

Secondly, we represented F28 has an extension of F24 , allowing us to perform
the computations in F24 instead of F28 (such a method is usually called composite
field approach). We chose the two irreducible polynomials p′(x) = x2 + x + {e}
and p′′(x) = x4 + x + 1 in F4[x] and F2[x] respectively and we denoted by
map the field isomorphism which takes an element a of F2[x]/p(x) as input and
outputs the pair (ah, al) ∈ (F2[x]/p′′(x))2 corresponding to the coefficients of the
linear polynomial (ahx+al) ∈ F24 [x]/p′(x). Moreover, we denoted by InvF24

the
function which corresponds to the inverse function over F2[x]/(x4 + x+ 1)\{0}
and which maps 0 into itself. In the following, we depict the different steps of
our computation:

Algorithm 3. Inversion of a masked element ã = a⊕ma in F28

Input: (ã = a⊕ma, ma) ∈ F28
2

Output: (˜a−1 = a−1 ⊕m′
a, m′

a)

1. Pick up three 4-bit random md, m′
h and m′

l

2. (mh, ml) ∈ F
2
24 ← map(ma)

3. (ãh, ãl) ∈ F
2
24 ← map(ã) [(ãh, ãl) = (ah ⊕mh, al ⊕ml)]

4. ˜d← ãh
2 ⊗ {e} ⊕ ãh ⊗ ãl ⊕ ãl

2 ⊕md ⊕ ãh ⊗ml [˜d = d⊕md]
⊕ ãl ⊗mh ⊕m2

h ⊗ {e} ⊕m2
l ⊕mh ⊗ml

5. ˜d−1 ← Algorithm 2.(˜d, md, md−1 , InvF24
) [˜d−1 = d−1 ⊕md−1]

6. ˜a′
h ← ãh ⊗˜d−1 ⊕m′

h ⊕mh ⊗˜d−1 ⊕md−1 ⊗ ãh ⊕md−1 ⊗mh [˜a′
h = a′

h ⊕m′
h]

7. ˜a′
l ← ãl ⊗˜d−1 ⊕m′

l ⊕˜a′
h ⊕˜d−1 ⊗ml ⊕ ãl ⊗md−1 ⊕ m′

h ⊕ml ⊗md−1 [˜a′
l = a′

l ⊕m′
l]

8. m′
a ← map−1(m′

h, m′
l)

9. ˜a−1 ← map−1(˜a′
h, ˜a′

l) [˜a−1 = a−1 ⊕m′
a]

10. return (˜a−1, m′
a)

For this version, the timing of the resulting AES algorithm are very interest-
ing and the input and output masks can be changed at each execution of the
algorithm.

In the following table, we have listed the timing/memory performances of
our proposal and the ones of other methods proposed in the Literature. As the
performances have been measured for a particular implementation on a partic-
ular architecture, the table above does not aim at arguing that a method is
better than another but aims at enlightening the main particularities (timing
performances and ROM/RAM requirements) of each method.

A Generic Method for Secure SBox Implementation 243

Table 4. Comparison of several methods to protect AES against DPA

Method Timings (ms) RAM (bytes) ROM (bytes) Multi-masking
Straightforward implementation 5 0 1150 -

Re-computation Methods in the single-mask mode
Re-computation Method in F28 [11] ×1.42 +256 +49% not allowed
Re-computation Method in F24 [11] ×2.60 +16 +150% not allowed

Re-computation Methods in the multi-mask mode
Re-computation Method in F28 [11] ×50, 60 +256 +49% allowed
Re-computation Method in F24 [11] ×5.86 +16 +150% allowed

Secure SBox computation methods based on the composite field approach
Oswald et al. [14, 16] ×5.20 0 +173% allowed
This paper (Algo. 3.) ×5.30 0 +150% allowed

Prouff et al. [18] ×6.40 0 +147% allowed
Methods with security under discussion

Oswald and Schramm [15] ×2.40 0 +200% allowed
Trichina et al. [22] ×4.20 +256 +165% not allowed

The AES implementations listed above only differ in their approaches to pro-
tect the SBox access. The linear steps of the AES have been implemented in the
same way and the internal sensitive data have been masked by bitwise addition
of a random value. We chose to protect only rounds 1 to 3 and 8 to 10, assuming
that the diffusion properties of the AES algorithm make DPA attacks impossible
to mount on inner rounds 4 to 7 (this implies that the SBox calculations made
in rounds 4 to 7 are performed by simply accessing the table representation of
F which is stored in ROM).

In the single mask mode, the re-computation method in F28 has the best
timing performances but at least 256 bytes of RAM must be allocated to store
the re-computed SBox table. As RAM is a sensitive resource in the area of
embedded devices, we implemented a second version which follows the outlines
of the composite field approach and then applies the re-computation method in
F24 . Because only 16 bytes of RAM are required to store the table re-computed
from the InvF24

function, the new implementation requires much less RAM
than the version in F28 and the timing performances are suitable for practical
applications.

As the multi-mask protection mode offers better security with respect to power
analysis attacks [5, 15], we tested the re-computation method in this mode. As
expected, the re-computation method in F28 no longer gives full satisfaction in
this mode (requiring 253 ms for one AES execution). The timing performances of
the re-computation method in F24 are acceptable in the multi-mask protection
mode, however they are close to (and even slightly greater than) the perfor-
mances of the SBox secure calculation methods. Moreover, 16 bytes of RAM are
required.

The SBox secure calculation methods of Oswald et al., Prouff et al. and
our proposed approach only differ in the ways of securely computing the value
d−1 ⊕ md−1 from d̃, md and md−1 (i.e. to securely perform the fifth Step of
Algorithm3.):

– In [14,16], the inversion is performed by going down to F4 and its complexity
approximatively equals the one of Algorithm 3. excluding the 5th Step which

244 E. Prouff and M. Rivain

is replaced by a square operation (since the inversion operation in F4 is
equivalent to squaring). For our implementation of [14, 16], the number of
cycles required for the fifth step is 267.

– In [18], the inversion is essentially performed by computing a Fourier trans-
form on F

4
2. For our implementation of [18], the number of cycles required

for the fifth step is 468.
– For the new solution presented here, the fifth step essentially corresponds to

the computation of y−1 ⊕md−1 for every y ∈ F
4
2. For our implementation,

the number of cycles required by the fifth step is 270.

The three methods can be used in the multi-mask protection mode without
decreasing the performances of the implementation and they offer approxima-
tively the same (good) level of security related to first order DPA attacks. The
execution timings of AES implementations based on our proposal or on Oswald
et al.’s method are very close and their RAM requirements are almost equal. The
additional time required by the Prouff et al. method is slightly greater, however
the code seems to be shorter (2844 bytes of ROM versus 2881 and 3144 bytes of
ROM for our method and the Oswald et al.’s method).

The methods proposed by Trichina [22] and Oswald-Shramm [15] have good
timing performances but are not perfectly resistant to first order DPA attacks.

– In the method of Trichina et al., a primitive element of F28 is computed and
every non-zero element of F28 is expressed as a power of that element. To
resolve Problem 1 for the bitwise operation, Trichina et al. use pre-computed
discrete logarithm and exponentiation tables to realize the SBox operation.
As argued in [15], the method has a faulty behavior when some intermediate
values are null and to correct the method without introducing a flaw with
respect to first order attacks seems to be an issue.

– The method proposed by Oswald and Shramm offers the best timing per-
formances. As for Algorithm 3., it is based on the composite field approach
but steps 4 to 7 are replaced by a sequence of table look-ups and bitwise
additions. The table look-ups have been render resistant to first order DPA
attacks by applying the global look-up table method (which is recalled in
Sect. 3). For example, the computation of d−1⊕md−1 (Step 5) is performed
by accessing the table Tinv associated to the function ((d ⊕ md),md) ∈
(F24)2 �→ (d−1 ⊕md) ∈ F24 . As argued in Sect. 3, the global look-up table
method has a flaw with respect to first order DPA attacks. Indeed, to ad-
dress the Tinv table the value (d ⊕ md)||md is manipulated, which results
in a power consumption that leaks information on the sensitive value d. For
instance, it can be checked that I(d,H((d ⊕ md)||md)) is not null, which
results in an information leakage in the Hamming Weight model. Moreover,
the input and output masks being equal, this method has also a potential
flaw in the Hamming Distance model. Indeed, if a transition occurs between
the index (d⊕md)||md and the value d−1⊕md accessed in the look-up table
(which is very likely in a single bus architecture), the mask md is canceled
and information leaks about d and/or d−1.

On the Security of a Popular

Web Submission and Review Software (WSaR)
for Cryptology Conferences

Swee-Won Lo1,�, Raphael C.-W. Phan2, and Bok-Min Goi3

1 School of Electrical & Electronics Engineering & Computer Science,
Kyungpook National University, Sankyuk-dong, Buk-gu, Daegu 702-701, Korea

swlo@ee.knu.ac.kr
2 Laboratoire de sécurité et de cryptographie (LASEC),

Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland

raphael.phan@epfl.ch
3 Centre for Cryptography and Information Security (CCIS)

Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Malaysia
bmgoi@mmu.edu.my

Abstract. Most, if not all, conferences use an online system to handle
paper submissions and reviews. Introduction of these systems has sig-
nificantly facilitated the administration, submission and review process
compared to traditional paper-based ones. However, it is crucial that
these systems have strong resistance against Web attacks as they in-
volve confidential data and privacy. Some submissions could be leading
edge breakthroughs that authors do not wish to leak out and be sub-
tly plagiarized. Also, security of the employed system will attract more
submissions to conferences that use it and gives confidence of the quality
that the conferences uphold. In this paper, we analyze the security of the
Web-Submission-and-Review (WSaR) software - latest version 0.53 beta
at the time of writing; developed by Shai Halevi from IBM Research.
WSaR is currently in use by top cryptology and security-related con-
ferences including Eurocrypt 2007 & 2008, Crypto 2007, and Asiacrypt
2007, annually sponsored by the International Association for Crypto-
logic Research (IACR). We present detailed analysis on WSaR’s security
features. In particular, we first discuss the desirable security features that
are designed into WSaR and what attacks these features defend against.
Then, we discuss how some untreated security issues may lead to prob-
lems, and we show how to enhance WSaR security features to take these
issues into consideration. Our results are the first known careful analysis
of WSaR, or any type of online submission system for that matter.

Keywords: Web submission and review software, security analysis,
privacy, passwords, email, protocol.

� Part of work done while the author was at CCIS@Multimedia University (Cyberjaya
campus) and iSECURES Lab@Swinburne University of Tech (Sarawak campus).

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 245–265, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

246 S.-W. Lo, R.C.-W. Phan, and B.-M. Goi

1 Introduction

About two decades ago, authors interested to submit papers to a conference would
submit via postal service or airmail. After being reviewed, papers (together with
the reviews) would be sent back by similar means. Before the camera-ready dead-
line, authors of accepted papers would need to race against time to send their
camera-ready versions over, and hope that they do not get lost in transit. This
method of correspondence is not only costly, it is also time-consuming. More no-
tably, it will be hard to trace lost or delayed papers and reviews since it all de-
pends on the reliability of the postal system. Fast forward a few years, technology
advances introduce the use of email (attachments) and facsimile. Although most
email services are free of charge, this method is often limited in terms of the size
of the attachment(s). Facsimile, on the other hand, can be costly although fast.

Thus, the introduction of online web-based systems significantly facilitates
the paper submission and review process [26], and overcomes shortfalls in the
traditional paper-based system. Authors and reviewers can track their papers’
progress anytime, anywhere, as long as they have an Internet connection. In
addition, the conference Chair is now capable of managing papers and reviews
more effectively, as well as reacting quickly to feedback and complaints.

According to a survey [26] by ALPSP1 on web submission and review systems
for journals, among the 442 respondents selected at random from the ISI Web
of Knowledge database, 81 per cent preferred to use web submission and review
systems and 36 per cent said that they would think twice when choosing a
journal without online submission for their work. Following the introduction of
online submission, there was a 25 per cent increase in submission volumes and
publishers reported a 30 per cent decrease in administration time. From this
survey, we see that online submission and review systems are playing a significant
role. Nevertheless, popular though they be, there is still an issue involved that
should be a major concern among the community - how secure are the data
handled by these systems?

In this setting, security and privacy can be seen from two opposite perspec-
tives. One, arguably less eminent, is the risk of malicious individuals attempting
to obtain unauhorized access to leading edge research results and thus idea theft,
or cause unfair dismissal of submitted papers. On the other is the case of honest
paper authors desiring that the submission system maintains their privacy and
secrecy of research ideas, and be able to verify to themselves and prove later to
others that their submissions are properly handled by the system; at least that
any errors should be detectable without unnecessary delay. Also desirable to the
honest reviewer is that reviewer anonymity is upheld.

In this paper, we analyze the web-submission-and-review system (known as
WSaR from here onwards) [10] developed by Shai Halevi from IBM Research.
WSaR is currently in use by top cryptology conferences including Eurocrypt
2007 & 2008, Crypto 2007 and Asiacrypt 2007, annually sponsored by the Inter-
national Association for Cryptologic Research (IACR) [11]. See Appendix B for
a longer list.
1 Association of Learned and Professional Society Publishers.

On the Security of a Popular Web Submission 247

2 WSaR and Its Security Features

WSaR is open source and is hosted at SourceForge [23]. While analyzing its
HyperText Preprocessor (PHP) scripts, we found some security features that
have been designed into WSaR to protect against several common Web attacks.
This section will analyze how the features are added and the type of attacks the
features defend against.

2.1 Password Strength

Passwords are often the first defense against intrusion. Relative to online submis-
sion and review systems, passwords are the first fortification to ensure the quality
of conference proceedings because they are used to safeguard the submissions
and their reviews.

In order to gain initial access to the administration or review sites, WSaR
computes and generates unique passwords for the conference Chair and reviewers
respectively. Firstly, after the customization phase, the Chair will be given a
10-alphanumeric-character password to log in to the administration site. Once
logged in, he has the option to change the default password.

The same goes to the reviewers (in most security conferences, a reviewer with
access to the online system is called a program committee member) - soon af-
ter the Chair grants the reviewers access to the review site, they will receive a
notification email that gives them the password to log on to their own review
sites. Here, they will be able to view the list of submissions (for which they have
no conflict of interest), change their reviewing preferences, post their reviews,
participate in paper discussions or take part in a ballot. On the other hand,
throughout the submission phase, a distinct submission-ID and password will be
generated for every paper. Authors will need these parameters to revise or with-
draw the papers. However, they do not have the option to change the submission
password.

These “WSaR-generated” passwords are 10-alphanumeric-character strings.
Each character is either uppercase (A-Z), lowercase (a-z), numerals (0-9), or
sometimes a tilde (˜) or an underscore (). Figure 1 illustrates how passwords
are generated in WSaR:

MD5
hash

function

5870660775b9e7e9551c9f314c5bb651

Extracted

5870660775b9e7e9 Encoding
scheme

M71c1tMvv_

32 hexadecimal-character string

10753459c7300b71b5838899114

A random string

10-alphanumeric-digit string
16 hexadecimal-character

string

 Fig. 1. Password generation process for the reviewer

248 S.-W. Lo, R.C.-W. Phan, and B.-M. Goi

Fig. 2. An example email where generated password is emailed to the conference Chair

1. For the Chair and PC members: A long random string is generated using
PHP functions such as uniqid(), mt_rand(), and rand(). This random
string has length between 15 to 28 digits.
For the submissions: A long random string is generated using the similar
functions as above. This string is then appended by the submission’s title
and the author’s name.

2. The hash of the resulting string is then computed via PHP’s MD5 function.
3. The first 16 hexadecimal digits of the resulted message digest are extracted.
4. A custom WSaR encoding function is used to compress these extracted digits

into a 10-digit alphanumeric string.
5. The resulting string (which is the password) will be emailed to the user (see

Figure 2).

Note that an alphanumeric character corresponds to 6-bit entropy, so the
entire 10-alphanumeric-character string requires an exhaustive effort of 260 to
brute force. Therefore, the passwords generated by WSaR are deemed to be
secure.

2.2 Password Storage for Conference Chair and PC Members

No matter where passwords are stored on the online system server, they should
be stored in encrypted or hashed form, similar to multi-user operating systems
like Unix, Linux etc. The most popular way to seal passwords in a database is via
password hashing. There are currently two most commonly used hash functions,
namely the Secure Hash Algorithm-1 (SHA-1) and the Message Digest 5 (MD5).

MD5 produces a hash that is 128 bits long (equivalent to 32 hexadecimal
characters) while SHA-1 computes a hash that is 160 bits long (equivalent to
40 hexadecimal characters). Among these two, MD5 is the more commonly used
hash function to safeguard passwords as well as to ensure message or software
integrity. Likewise, this function is also employed in WSaR when it comes to
storing passwords.

On the Security of a Popular Web Submission 249

BIY05o7gnK3vvHRaepMt1Rbob@example.comM71c1tMvv_

MD5
hash

function

2f857cace861d81979f78854399058eb
Database

32-hexadecimal-character string

MD5
hash

function

Compression
function

2fa0d14fca37b6dce99aecc44521f2981014245b61e33a37011350915937

BIY05o7gnK3vvHRaepMt1R

A random string 32-hexadecimal-character string

22-alphanumeric-digit salt string

salt string||email||password

Fig. 3. Generation of salt string and password storing process

Here, we look at how WSaR protects the Chair and PC members’ passwords
stored in the system database (see Figure 3):

1. Upon customization, a random string is generated using PHP functions such
as uniqid(), mt_rand(), and rand(). The string’s message digest is com-
puted and the digest is then compressed using a custom WSaR function
into a 22-alphanumeric-character salt string. This salt string is saved and is
constant throughout the entire conference.

2. The user’s email address and password are retrieved.
3. The salt string is then appended by the user’s email address and password,

and it is fed to the MD5 hash function.
4. The resulting digest is stored into the database table (see Figure 4).

Fig. 4. The digests are stored in the database instead of the passwords

In this case, users’ passwords are not stored in the clear in the database, and
it is infeasible for an attacker to reverse on the hash values to retrieve the pre-
images (passwords). In Section 3.5, we will discuss an issue with the storage of
submissions’ passwords.

Furthermore, this technique of appending a salt string to the email address
and password before hashing it increases the difficulty in cracking the passwords
using brute-force attack even if an attacker has access to the hash table. In
Section 3.4, we discuss how using different salt strings (instead of a constant
one) can increase the difficulty in cracking users’ passwords.

250 S.-W. Lo, R.C.-W. Phan, and B.-M. Goi

2.3 Input Sanitization

As discussed in [8], SQL injection is considered one of the most dangerous threats
to Web applications because it allows an attacker to connect to the back-end
database and extract any data as he wants. An example of an SQL injection
attack is the log in form where a user enters his username and password to be
authorized, and the server will retrieve the user’s ID and credit card number,
for example. Generally, the SQL query is shown in Table 1.

Table 1. SQL statement to retrieve user’s ID and credit card number

SELECT ID, CREDIT_NUM
FROM users
WHERE username = ‘$username’
AND password = ‘$password’

Assuming an attacker enters “Jane” in the username field and provides the
string “anything’ OR ‘a’=‘a” in the password field. The SQL query would
become:

Table 2. SQL statement as “modified” by the attacker

SELECT ID, CREDIT_NUM
FROM users
WHERE username = ‘Jane’
AND password = ‘anything’ OR ‘a’=‘a’

The ‘a’=‘a’ part is always true regardless of what the first part of the query
contains, thus the attacker would be able to trick the application to obtain
database data that is not supposed to be returned by the application. Success-
ful SQL injection attack will also result in authentication bypass and database
modification [15].

The “one rule” to defend against SQL injection (as well as cross-site scripting,
buffer overflows etc.) is input sanitization. If this is done, the Web application
will be 80 per cent more secure.

There are two commonly used ways to validate input: (1) strip off any undesir-
able characters (such as meta-characters) and (2) check input data for expected
data type [12]. Both ways are implemented in WSaR. We note that the po-
tential SQL injection characters include: (”*;&<>/’ˆ) [7]. In WSaR, a possible
exploitation of special characters for an SQL Injection attack is in the “Submis-
sion/Revision Receipt” page where, as an example, the receipt page’s URL for
submission A with password ‘ABC’ will be“http://localhost/receipt.php?
subId=A&subPwd=ABC”. In this case, query to the database will be as in Table 3
(as an example).

http://localhost/receipt.php?subId=A&subPwd=ABC
http://localhost/receipt.php?subId=A&subPwd=ABC

On the Security of a Popular Web Submission 251

Table 3. SQL statement to retrieve submission with subId=A and subPwd=ABC

SELECT title, authors, abstract
FROM submissions
WHERE subId=‘A’
AND subPwd=‘ABC’

Firstly, WSaR uses the my_addslashes() function in PHP to remove unde-
sirable characters. If an attacker happens to be one of the submitters to the con-
ference, she would know the pattern of the receipt page’s URL. Now, she is inter-
ested in finding out the paper submitted by her rival, so she launches an SQL In-
jection attack on the receipt page by changing the URL to “http://localhost/
receipt.php?subId=1&subPwd=1’% 20OR% 20‘1’=‘1, where %20 represents a
space in its HTML entity. This time, the query will be as follows:

Table 4. SQL query for an SQL Injection attack

SELECT title, authors, abstract
FROM submissions
WHERE subId=‘1’
AND subPwd=‘1’ OR ‘1’=‘1’

However, since all special characters are removed by the my_addslashes()
function - single quotes are ignored using backslashes (commented out), the
‘1’=‘1’ part no longer makes sense. Thus, the attacker will receive a generic
error message as shown in the screen shot in Figure 5.

If the software does not sanitize user’s input in all PHP scripts (i.e. all
my_addslashes() functions are removed from every WSaR scripts), the URL

Fig. 5. Attacker receives an error message

http://localhost/receipt.php?subId=1&subPwd=1'% 20OR% 20`1'=`1
http://localhost/receipt.php?subId=1&subPwd=1'% 20OR% 20`1'=`1

252 S.-W. Lo, R.C.-W. Phan, and B.-M. Goi

Fig. 6. An attacker can click on the Revision or Withdrawal link to revise or withdraw
the submission

constructed by the attacker will return submission 1’s receipt page and from
there, she can redirect to the revision page and revise her rival’s paper or even
withdraw it from the conference without her rival knowing it (see Figure 6).

Secondly, developers should specify the type of input that is expected for cer-
tain form fields, and that the unexpected input will be removed. As an example,
a form field that requests for user’s phone number should accept only numbers
as input. WSaR always has a specific input type that is expected for the sub-
mission ID - it processes only integers for the submission ID field. In spite of
that, developers can make use of regular expressions to tell the program the type
of pattern in the text that it should look for [19]. If the data submitted does
not match the regular expression, it will be ignored [7] or error messages will be
generated.

Both the above mentioned methods are employed in WSaR. Therefore, this
system is not categorized as one of the 60 per cent of Web applications that is
vulnerable to SQL injection (or other attacks due to invalidated input) [24].

2.4 Resistance to Bypass of Access Control Checks Through Forced
Browsing

Forced browsing refers to a technique used by attackers to access to resources
that are not referenced, but are nevertheless accessible [25]. Access control checks
are normally performed after a user gets authenticated and it monitors what
authorized users are allowed to do. As an example, if a reviewer is blocked from
reviewing certain submissions due to conflict of interest, he should not be able to
bypass the access control checks by requesting the review form of that submission
directly in the URL.

On the Security of a Popular Web Submission 253

Fig. 7. Review form for submission 1

Taking a look at the URL of a review form; to review submission A, re-
viewer will access the review form at the URL “http://localhost/review/
review.php?subId=A” (see Figure 7).

Assume that the insider attacker is one of the reviewers in a conference and she
is blocked from reviewing submission 1 since she is one of the authors of that sub-
mission. In order to make sure that her submission is accepted to the conference,
the attacker needs good reviews for her paper. Thus, she tries to change submission
A’s review form URL to which she has access, from “http://localhost/review/
review.php?subId=A” to “http://localhost/ review/review.php?subId=1”
since she is prohibited to access the link directly from her review page. If the sys-
tem then displays the review form for submission 1, the attacker has bypassed the
access control checks through forced browsing.

Fortunately, the attempt to bypass WSaR’s access control check is forbidden
in the review form page, as well as the voting page and the reviewers’ discus-
sion forum. Whenever a reviewer attempts to access a blocked submission by
directly specifying the submission-ID in the URL, WSaR will firstly perform an
authorization check in the reviewer table; if the reviewer is blocked from that
submission, it will display an error message indicating that the submission is not
found, or the reviewer has a conflict as shown in Figure 8.

Fig. 8. WSaR prevents broken access control

3 Security Issues and Enhancements

In addition to the security features already designed into WSaR discussed in
Section 2, we have also discovered some security issues not treated in WSaR
and in this section, we discuss them in detail and then describe ways to enhance
WSaR security by taking them into consideration.

http://localhost/review/review.php?subId=A
http://localhost/review/review.php?subId=A
http://localhost/review/review.php?subId=A
http://localhost/review/review.php?subId=A
http://localhost/review/review.php?subId=1
http://localhost/review/review.php?subId=1

254 S.-W. Lo, R.C.-W. Phan, and B.-M. Goi

For any security issue, we will discuss its implications from the two opposing
perspectives motivated in Section 1. We also highlight whether exploitation of
issues can be traceable or uniquely pointing the finger to the culprit. This has
devastating consequences if the attacker cannot be traced since it means even
a curious (if not malicious) researcher from the scientific community could have
mounted the attack without any counter-incentives i.e. no adverse effects on his
reputation. Furthermore, issues that lead to attacks for which the culprit cannot
be unambiguously accused will cause disputes for which a malicious attacker
could deny his involvement or an honest user be unfairly thought by peers to
have mounted an attack.

3.1 Browser Caching

Browser caching is categorized as one of the critical areas in OWASP’s Top Ten
projects under “Broken Authentication and Session Management” [25].

In WSaR, the submission-ID and password are sent by the HTTP GET method.
Information sent in such way will be displayed in the browser’s URL [18] and it
is extremely undesirable (see Figure 9).

 Fig. 9. Submission-ID and password are displayed in the page’s URL

This means the submission-ID and password are part of the URL. As has been
highlighted in [25], authentication and session data should not be submitted as
part of a GET to prevent someone malicious from using the “Back” button in
an authorized user’s browser to backup the page and hence obtain the password
from the URL.

Alternatively, even if a browser window is closed, the URL info can also be
obtained from the browser’s cache and history. Recall that browsers cache most
of the contents of frequently visited pages so that the pages will load faster the
next time they are visited, including images, sounds, cookies, web pages and their
URLs. Information stored in browsers’ cache is not encrypted [1] and it can be
obtained by anyone who accesses the computer. Both Netscape Navigator and
Mozilla Firefox, by default require users to clear the browser’s cache (and disk
cache - also known as “Temporary Internet Files”) manually. On the other hand,
Internet Explorer will clear the browser’s cache but not the “Temporary Internet
Files”, once the browser is restarted. In addition, previously visited URLs are
typically stored in the browser’s history; for instance the latest versions (at the
time of writing) of Netscape Navigator and Mozilla Firefox by default will only
clear browser’s history every nine days, while the default for Internet Explorer
is 20 days.

On the Security of a Popular Web Submission 255

Fig. 10. Internet Explorer’s temporary internet files that stores the receipt page’s URL

Figure 10 shows the receipt URLs stored in the “Temporary Internet Files”
folder. In spite of that, if the user does not clear the browser’s cache or history
after he uses the computer, the URLs will also be displayed in the browser’s
history pane as shown in Figure 11.

 Fig. 11. Submission ID and password are exposed to the attacker

This threat can be launched by any individual having access to a common
machine previously utilized by a WSaR user, and upon retrieving the login in-
formation (ID and password), he can login as the WSaR victimized user. This
attack is non-traceable in the sense that the attacker cannot be later pinpointed,
so he can mount the attack without any risk of jeopardizing his reputation. Thus,
the counter-incentive is non-existent that it will indeed be tempting for any in-
dividual to abuse this issue to the victim’s disadvantage.

Browser caching can be prevented by submitting the submission-ID and pass-
word as part of a HTTP POST method [25] instead. If the POST method is used,
we can employ the PHP’s predefined variable “$_POST” to retrieve the values
entered in the submission-ID and password fields respectively. In this case, both
submission-ID and password will not be displayed in the page’s URL.

Other than this, WSaR users are advised to clear the browser’s cache before
they leave the computer. In Netscape Navigator, users would have to clear both
the memory and disk cache; in Mozilla Firefox, users should check all fields when
clearing their private data [4]; in Internet Explorer, users should clear the history
and all temporary internet files [21]. This way, users can ensure the security of
their private information.

3.2 Constant Salt String for Reviewer and Chair Passwords

In Section 2.2, we discussed how WSaR uses a salt string appended to the re-
viewer’s email address and password to build a stronger defense in securing his

256 S.-W. Lo, R.C.-W. Phan, and B.-M. Goi

passwords. However, this salt string is constant throughout the entire confer-
ence for any party, thus all users of the same conference will have the same
salt appended to their password. So what differentiates each user is just the
email address (which is typically public information) and his password. This in-
dicates that the salt string does not really provide better strength against insider
attackers (users of the same conference) than conventional password-based au-
thentication systems. Therefore, we recommend the use of different salt strings
for different users.

These salt strings will be stored in a single PHP script upon customization
of WSaR, and they will be labeled in the sense that “SALT_2” will be used for
PC member with the ID of 2 and so on. In this case, since the salt strings will
be random and of different lengths, the attacker would have a much harder time
trying to guess the exact salt that is appended to a specific user’s email address
and password.

Again, this threat is non-traceable as it allows a malicious insider individual
to brute-force the password, upon which he can login as the victim without any
evidence pointing back to him.

3.3 Storage of Submission Passwords

Throughout our analysis, we discovered that although WSaR stores the hashes
of reviewers’ passwords, it does not do the same when it comes to storing sub-
missions’ passwords (see Figure 12). For someone who manages to gain access
to the database, he has the ID and password for every submission as well. We
recommend that the submission passwords to be salted and hashed as well to
secure them so that even if a hacker manages to penetrate the database’s secu-
rity, he would face the prospect of a potentially expensive search for the exact
password.

Fig. 12. Submissions’ passwords are stored in the clear in the database

3.4 Password Policy and Strength Checking

Using a good password by every user is vital to defending a system. The com-
ponents of a good password should be at least eight characters long, should not
consist of dictionary words (would be vulnerable to dictionary attack otherwise),
should never be the same as the user’s log in name, should not consist of any item
that is easily identified with the user, and have at least three of the following
elements [5]:
– One or more uppercase letters (A-Z)
– One or more lowercase letters (a-z)

On the Security of a Popular Web Submission 257

– One or more numerals (0-9)
– One or more special characters or punctuation marks

However, it is worth noting that some systems do not permit the use of certain
special characters in user’s password string.

Although the passwords supplied by WSaR fulfill all the mentioned require-
ments, users might find the password hard to remember and opt to change it.
Therefore, we analysed WSaR’s password change mechanism. WSaR does not
have any password policies imposed to ensure the strength of new passwords,
thus a careless user may happen to employ a password which is easily cracked
by any password-cracking tools, without being reminded not to do so. Hence,
we suggest that WSaR should force its users to adopt passwords that cannot
be easily cracked. Google mail [9] uses a scale to show its users the strength of
their passwords with parameters such as “Too short”, “Weak”, “Fair”, “Good”
or “Strong”. This is a feature that could be added to WSaR.

Fig. 13. Google mail’s password strength evaluation

However, careless users tend to ignore the password strength evaluation and
proceed to employing the new password. Consequently, the system’s security
could still be breached.

Having said that, WSaR’s password changing mechanism should perform an
assessment on the new password - whether it is too short or it contains dictionary
words or even a row of letters from a standard keyboard layout (e.g., ertyui) [14].
If a user’s new password happens to be a weak password, a pop up window should
be issued to require him to re-enter a new password.

Besides that, a password policy should also be implemented to require frequent
change of passwords. If an attacker uses brute-force attack to crack a password,
it is possible that he would be taking a long time (depending on the length of
the password, speed of both the machine and network connection) to complete
the attack [14]. In this case, if the user changes his password frequently, he could
avoid his password from being cracked via brute-force attack.

3.5 Absence of File Integrity and Binding

Whenever we download any files or software, the first thing we would want to do
is to check the file’s integrity. Presently, the most popular method used to verify
a file’s integrity is via the use of the MD5 function. If the file content is modified,
it can be easily detected by re-computing its hash value. In an online submission
and review system, calculating a submission’s message digest is important both
to ensure message integrity and to bind the author to the submitted paper due
to absence of face-to-face communication.

We note that WSaR does not have this feature, i.e. upon submission the file’s
message digest is not computed and thus not supplied to both the author and the

258 S.-W. Lo, R.C.-W. Phan, and B.-M. Goi

Chair. Therefore, considering the case of malicious users, if an author happens to
submit a not-so-perfect paper in order to meet the submission deadline, he can
later deny that he submitted that version of the paper, then claim that the file
is corrupted and request for a second-time submission, thus gaining advantage
over other authors. More devastatingly, an honest author could have submitted
a proper paper but the file became corrupted by the server machine; in which
case it is desirable to be able to unambiguously prove that the corrupted version
is not the submitted file, or at least be able to check during submission that it
was properly received. This avoids ambiguity when a Chair notes during review
phase that a file is corrupted and is unsure if it was intentionally submitted
in that form in order to buy authors some time, or if it was indeed submitted
properly but was corrupted in transit.

Indeed, this issue is often not so much to guard against malicious authors but
rather so as to allow a scientifically honest author in this situation to be able to
prove his innocence beyond any doubt.

To counter this issue, we recommend that authors be presented with a 128-
bit hash of his submission file and that this hash value is kept as a record for
the Chair. Since WSaR is developed in PHP, we can apply the “md5_file()”
function where it calculates the message digest of the given file [18].

Firstly, a new column has to be created in the “submissions” table to record
the message digest by adding a “msgDigest varchar(255) BINARY NOT NULL”
statement in the “create_table()” function, which can be found in WSaR’s
database.php script. Subsequently, we added a statement to calculate the file’s
message digest in the act-submit.php and act-revise.php scripts, which are
used in WSaR to process all parameters entered in the submission and revision
form respectively. The resulted digest is inserted into the database under the
“msgDigest” column and authors will be redirected to the receipt page. An
email will also be generated to the author, and carbon-copied to the Chair with
all submission details listed (including the message digest). Now, we can be
assured of the file’s integrity as well as binding the author to his submission.
The screenshots are shown as Figure 14 and Figure 15 in Appendix A for further
illustration.

4 Protocol Sketch for Password Distribution Via Email

In general (not specific to WSaR), passwords for reviewers are commonly sent
via emails to the reviewers’ email addresses. This is indeed the most practical
way to distribute passwords, although it is known that email formats by default
(and this is the setting that users commonly use) do not provide any form of
confidentiality nor authenticity, unless explicit email clients or plug-ins like PGP
are applied.

We take what we view as a concrete step towards securing online systems by
motivating here and sketching the basic idea of our ongoing work: a proposal for
an email-based password distribution protocol for security conferences. Having
this kind of protocol in place will prevent reviewer passwords from being easily

On the Security of a Popular Web Submission 259

compromised through attacks mounted not on the system itself but on how this
password is distributed. Indeed, it is well known that the study of password-
based key exchange protocols is a long-standing research topic in cryptology,
thus we should avoid having security conferences using in practice the email-
based password distribution protocols that are not securely designed.

The setting for an email ID-based password distribution protocol is differ-
ent from those in typical key exchange protocols [3]. The protocol involves two
parties, the program chair C and the reviewer R. Rather than requiring any
public-key infrastructure (PKI), only a trusted web site bulletin board is used,
for instance the IACR website (http://www.iacr.org), where URLs for differ-
ent IACR conferences or workshops are hosted or mirrored. On this website is
listed the email address IDC of the program chair. Meanwhile, it is common that
the chair invites program committee members (the reviewers) who are experts
in the field and for whom the chair knows the authentic email addresses IDR

either himself, or for which he can ask from other experts through some out of
band mechanism. Alternatively, the email addresses can be obtained from the
IACR membership database.

Thus, when a reviewer R receives an email from the chair C, it can check
to be certain that the email came from the chair; vice versa a chair knows if
an email came from a particular reviewer. This provides source authentication
without resorting to any PKI.

Then a general sketch of this kind of protocol proceeds as follows:

1. C generates an ID-based public and private key pair based on his IDC . De-
note these as pkC and skC . Then C computes the message sigSKC

(IDC , IDR,Invite) where sigSK denotes signing under a person’s private
key SK, and Invite contains a one-way (e.g. hashed) representation of a
typical invitation email stating the conference name etc.

2. C sends m1 = sigSKC(IDC , IDR, Invite) to R.
3. R generates an ID-based public and private key pair based on his IDR. De-

note these as pkR and skR. Then R computes the message sigSKR(IDR, IDC ,
Accept).

4. R sends m2 = sigSKR(IDR, IDC ,Accept) to C.
5. C generates a password pwdR for R.
6. C sendsm3 =〈sigSKC(IDC , IDR, m1, m2, EncPKR(pwdR)), EncPKR(pwdR)〉

to R, where EncPK(·) denotes encryption under a person’s public key PK.
7. R obtains pwdR by decrypting EncPKR(pwdR).

In fact, this can be a concrete step to a long-term setting where one submission
and review system is used for all conferences that use WSaR, so only a one-time
setup cost e.g. the ID-based password distribution protocol as above, is incurred
for new users, while existing users can update their passwords online through the
system at any time; and new membership in conference program committees of
existing users only require the program chair to email to a PC member R asking
him to update his password himself rather than having to email newly generated
passwords every time R is involved in a new conference program commitee. In-
deed, this centralization is possible since conferences using WSaR are typically

260 S.-W. Lo, R.C.-W. Phan, and B.-M. Goi

hosted on a central machine e.g. at http://s1.iacr.org, unlike some other
submission software that need to be locally set up. Furthermore, conferencesus-
ing WSaR commonly involve program committee members who are involved in
multiple conferences so the setup cost will be amortized over time and this cen-
tralization makes sense compared to treating each conference system separately.

We emphasize here that the above is a sketch of a protocol design that we are
currently working on, whose formal security we are in the process of proving. This
should therefore preclude the sprouting of future papers that propose informal
“breaks” on the above enumerated steps. The above sketch should only be taken
as a basic template and taken for the general idea that it is sketching and nothing
more. We do welcome comments for which will be acknowledged in future work,
or collaborations in this direction.

5 Concluding Remarks

In this paper, we have seen that WSaR is built with a strong defense against a
number of known attacks in the Web. We have also discovered and discussed the
absence of several features that could jeopardise the security of WSaR users and
we proposed suggestions to further enhance WSaR’s security that address these
issues. As a side remark, we recommend that besides strengthening the defense of
the software itself e.g. WSaR, Web administrators should secure the Web server
as well as the back-end database and constantly monitor the activities going on
in the Web server to detect any malicious behaviour.

In addition, as a further step to securing these types of systems, we have
also motivated the design of an email-based password distribution protocol for
WSaR users and argued that together with such a design, there are advantages
in centralizing conferences that use WSaR.

Acknowledgement

The first author thanks Shai Halevi for encouragement during the initial stages
of this research, for patiently answering queries about WSaR and for detailed
comments on an early version of this paper. The second author thanks Thomas
Baignères for stimulating discussions on another popular submission and review
system iChair. Nous avons eu un temps merveilleux pendant la pause de cafè,
ou bien? We thank an anonymous referee for motivational comments especially
on the need to make clear the distinction between pro- and counter-incentives
for an attacker; and for acknowledging the fun of this research work :-)

References

1. AICT Security - Empty your Cache. Available online at
https://www.ualberta.ca/AICT/Security/BrowserCache.html#private

2. Archer, T.: Are Hash Codes Unique? Available online at
http://blogs.msdn.com/tomarcher/archive/2006/05/10/594204.aspx

http://s1.iacr.org
https://www.ualberta.ca/AICT/Security/BrowserCache.html#private
http://blogs.msdn.com/tomarcher/archive/2006/05/10/594204.aspx

On the Security of a Popular Web Submission 261

3. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

4. CIBC - Clear Your Browser’s Cache. Available online at
http://www.cibc.com/ca/legal/clear-browsers-cache.html

5. Conklin, W.A., White, G.B., Cothren, C., Williams, D., Davis, R.L.: Principles of
Computer Security: Security+ TM and Beyond. McGraw-Hill, New York (2005)

6. EasyChair Conference System. Available online at
http://www.easychair.org/

7. Foster, J.C.: Defense Tactics for SQL Injection Attacks. Available online at
http://searchappsecurity.techtarget.com/tip/0,289483,sid92 gci1219912,

00.html

8. Fyre, C.: One Simple Rule to Make your Web Apps more Secure (2006),
Available online at http://searchappsecurity.techtarget.com/qna/0,289202,

sid92 gci1225425,gci1225425,00.html00.html
9. Google Mail. Available online at http://gmail.google.com

10. Halevi, S.: Web Submission and Review Software. Available online at
http://theory.csail.mit.edu/∼shaih/websubrev

11. IACR Conferences. Available online at http://www.iacr.org/conferences/

12. McClure, S., Shah, S., Shah, S.: Web Hacking: Attacks and Defense. Addison-
Wesley, Reading (2003)

13. Microsoft Corporation. Microsoft’s Conference Management Toolkit. Available on-
line at http://msrcmt.research.microsoft.com/cmt/

14. Password Cracking: Information from Answers.com (2006), Available online at
http://www.answers.com/topic/password-cracking

15. Peikari, C., Chuvakin, A.: Security Warrior. O’Reilly (2004)
16. Phan, R.C.-W., Goi, B.-M.: Flaw in IEEE Trans on Consumer Electronics Online

Submission System. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS,
vol. 3715, Springer, Heidelberg (2005)

17. Phan, R.C.-W., Ling, H.-C.: On the Insecurity of the Microsoft Research Confer-
ence Management Tool (MSRCMT) System. In: CITA 2005. Proceedings of Inter-
national Conference on IT in Asia, pp. 75–79 (2005) Also presented at the rump
session of Asiacrypt 2004, Jeju Island, Korea

18. PHP Manual. Full version available online at http://www.php.net/manual/en/
19. Regular Expressions (2006), Available online at http://searchappsecurity.

techtarget.com/sDefinition/0,290660,sid92 gci517740,00.html
20. ScholarOne, Inc. Manuscript Central: About Manuscript Central. Available online

at http://www.scholarone.com/products manuscriptcentral aboutMC.shtml
21. Security Information Clearing Browser Cache and History. Available online at

http://www.hlasset.com/files/Clearing Cache History.pdf
22. SoftConf.com - Software for Conferences. Available online at

http://www.softconf.com/index.html
23. SourceForge.net: Web Submission and Review Software. Available online at

http://sourceforge.net/projects/websubrev
24. What is SQL Injection? (2006), Available online at http://searchappsecurity.

techtarget.com/sDefinition/0,290660,sid92 gci1003024,00.html
25. The Ten Most Critical Web Application Security Vulnerabilities (2004) Avail-

able online at http://osdn.dl.sourceforge.net/sourceforge/owasp/OWASPTop

Ten2004.pdf

26. Ware, M.: Online Submission and Peer-Review System (2005) Available online at
www.zen34802.zen.co.uk/Learned Publishing offprint.pdf

http://www.cibc.com/ca/legal/clear-browsers-cache.html
http://www.easychair.org/
http://searchappsecurity.techtarget.com/tip/0,289483,sid92_gci1219912,00.html
http://searchappsecurity.techtarget.com/tip/0,289483,sid92_gci1219912,00.html
http://searchappsecurity.techtarget.com/qna/0,289202,sid92_gci1225425,00.html
http://searchappsecurity.techtarget.com/qna/0,289202,sid92_gci1225425,00.html
http://gmail.google.com
http://theory.csail.mit.edu/~shaih/websubrev
http://www.iacr.org/conferences/
http://msrcmt.research.microsoft.com/cmt/
http://www.answers.com/topic/password-cracking
http://www.php.net/manual/en/
http://searchappsecurity.techtarget.com/sDefinition/0,290660,sid92_gci517740,00.html
http://searchappsecurity.techtarget.com/sDefinition/0,290660,sid92_gci517740,00.html
http://www.scholarone.com/products_manuscriptcentral_aboutMC.shtml
http://www.hlasset.com/files/Clearing_Cache_History.pdf
http://www.softconf.com/index.html
http://sourceforge.net/projects/websubrev
http://searchappsecurity.techtarget.com/sDefinition/0,290660,sid92_gci1003024,00.html
http://searchappsecurity.techtarget.com/sDefinition/0,290660,sid92_gci1003024,00.html
http://osdn.dl.sourceforge.net/sourceforge/owasp/OWASPTopTen2004.pdf
http://osdn.dl.sourceforge.net/sourceforge/owasp/OWASPTopTen2004.pdf
www.zen34802.zen.co.uk/Learned_Publishing_offprint.pdf

262 S.-W. Lo, R.C.-W. Phan, and B.-M. Goi

A Storage and Display of Submissions’ Digests

We present below the screen shots of the “submissions” table, and the submis-
sion/revision receipt after the calculation of submission’s digest is incorporated.

Fig. 14. Digest of submission is stored in the database for Chair’s reference

Fig. 15. Digest of submission is presented in the receipt for the author

B Conferences That Have Used or Are Using WSaR

In reverse chronological order:

1. EUROCRYPT 2008: 27th Annual International Conference on the Theory
and Applications of Cryptographic Techniques

2. CT-RSA 2008: RSA Conference 2007, Cryptographers’ Track
3. LATIN 2008: 8th Latin American Theoretical Informatics
4. TCC 2008: 5th Theory of Cryptography Conference
5. PKC 2008: 11th International Conference on Theory and Practice in Public-

Key Cryptography
6. ASIACRYPT 2007: 13th Annual International Conference on the Theory

and Application of Cryptology and Information Security
7. ISC 2007: 10th Information Security Conference
8. CRYPTO 2007: 27th Annual International Cryptology Conference
9. ICALP 2007: Track C of the 34th International Colloquium on Automata,

Languages and Programming

On the Security of a Popular Web Submission 263

10. GOCP 2007: 1st International Workshop on Group-Oriented Cryptographic
Protocols

11. ACNS 2007: 5th International Conference on Applied Cryptography and
Network Security

12. EUROCRYPT 2007: 26th Annual International Conference on the Theory
and Applications of Cryptographic Techniques

13. USEC 2007: Usable Security Workshop
14. TCC 2007: 4th Theory of Cryptography Conference
15. CT-RSA 2007: RSA Conference 2007, Cryptographers’ Track
16. HVC 2006: 2nd Annual Haifa Verification Conference
17. PKC 2006: 9th International Conference on Theory and Practice of Public-

Key Cryptography

C Related Work

Many online paper submission and review systems are emerging. For the con-
text of cryptology and information security, the predecessor to WSaR is the
collection of PHP/Perl scripts written progressively by Chanathip Namprem-
pre, Andre Adelsbach, Andrew Clark and the Computer Security and Industrial
Cryptography (COSIC) group at Katholieke Universiteit Leuven.

These scripts were used for almost all mainstream cryptology and informa-
tion security conferences till 2006 when building on ideas in these scripts, two
successor systems were developed independently: WSaR by Shai Halevi of IBM
Research and iChair by Thomas Baignères and Matthieu Finiasz of LASEC at
EPFL. These two systems are now used by almost all mainstream cryptology
and information security conferences.

A few other major submission and review systems used in other fields deserve
some mention here:

1. Manuscript Central
Manuscript Central [20], developed by ScholarOne, Inc., is the online sub-
mission and peer review system used to handle manuscript submissions to
journals. It manages over 44,000 submissions per month and its compre-
hensive and user-friendly features result in reports that most journals us-
ing Manuscript Central achieve gains in submissions of 20 to 40 per cent
per annum. This system is currently used by most IEEE and Association
of Computing Machinery (ACM) journals. Manuscript Central is a fully-
developed software with 24-hour support on weekdays. By contacting the
sales representative, one would be able to obtain and understand the sys-
tem’s functionalities, features, pricing and get the system running in two
weeks’ time.

2. Microsoft Research Conference Management Tool (MSRCMT)
Firstly developed for ACM SIGKDD 1999, the MSRCMT [13] is an academic
conference management service sponsored by Microsoft Research. Surajit
Chaudhuri, a Research Area Manager at Microsoft Research is the architect
of MSRCMT. Since the year 1999, this system has been used in over 500

264 S.-W. Lo, R.C.-W. Phan, and B.-M. Goi

conferences, among them are the International Conference on Security of
Information and Networks (SIN 2007) and the ACM SIGCOMM 2007 Data
Communication Festival. Similar to Manuscript Central, the MSRCMT is
also a fully-developed system. It is free and hosted by Microsoft Research,
but with limited support since it is developed and managed by a small team.

3. EasyChair
Developed in the year 2002 by Andrei Voronkov, a Professor from the Univer-
sity of Manchester, EasyChair [6] is used by over 600 conferences in year 2007
alone. EasyChair is free and it is currently hosted by University of Manch-
ester’s Computer Science Department. EasyChair is capable of supporting
two models: (1) the standard model for conferences having one program com-
mittee and (2) the multi-track version for conferences having multiple tracks
that have their own program committee. There are a number of ACM and
IEEE conferences/workshops that have used or are using EasyChair. Among
them are the 8th IEEE/ACM International Conference on Grid Comput-
ing (Grid 2007), the 2nd ACM Workshop on Scalable Trusted Computing
(STC’07) and the 20th IEEE Computer Security Foundation Symposium
(CSF 20).

4. START V2 ConferenceManager
START V2 [22], written by Rich Gerber, is a product from SoftConf.com.
Apart from EasyChair, several IEEE and ACM conferences have, or are
employing START V2 as the submission and peer review system since the
year 2002. The IEEE Symposium on Intelligence and Security Informatics
(ISI 2007), the 2007 IEEE Symposium on Security and Privacy, the 5th
ACM Workshop on Recurring Malcode (WORM 2007) and the 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 2007)
are among the many IEEE and ACM conferences using START V2. Users
would need to contact the developer to order the system; the pricing de-
pends on whether one needs the system to be hosted at softconf.com, and
on the different types of licensing arrangements. This system is constantly
improving based on the users’ feedback.

It is worth to note two earlier work related to the security of online submission
and review systems, although our work here is the first detailed analysis of this
type of system. Phan and Goi [16] pointed out the lack of privacy in a system
used by an IEEE Transactions where the URL of pages that disclose paper
information and that allow paper revision for a particular submitted paper,
differ from pages of other papers by an ID counter. Thus if the URL to revise
author A’s submitted paper is uniquely identified by ID 100, then A can also
view the revision page for the paper submitted right after (resp. before) his,
which he knows will be uniquely identified by ID 101 (resp. 99). Correspondence
with the administrator of the system obtained the response that this was not a
significant issue.

Phan and Ling [17] discovered by accident when submitting their paper to a
conference using the Microsoft Research Conference Management Tool (MSR-
CMT) that the system automatically creates an account for co-authors of a

softconf.com

On the Security of a Popular Web Submission 265

corresponding author who submitted a paper, where email addresses of these
co-authors are used as login usernames and the numeric 0 is used as the de-
fault password. This applied for any co-author(s) of any paper. Correspondence
with developers of MSRCMT obtained the response that this was an exercise of
regression testing, though the flaw was present for some months in the actual
online system used by several conferences. As of 2005 it was verified that both
the above systems no longer exhibit those issues.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 266–276, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Authorization Constraints Specification of RBAC

Lilong Han, Qingtan Liu, and Zongkai Yang

Department of Information and Technology&Engineering Research Center on Education
Information Technology, Central China Normal Uninversity, 430079,Wuhan, China

{Lilong Han,Qingtan Liu,Zongkai Yang,hanlilong2001}@yahoo.com.cn

Abstract. Constraints are an important aspect of role-based access control
(RBAC) and are often regarded as one of the principle motivations behind
RBAC. Although the importance of the constraints in RBAC has been
recognized for a long time, they have not received much attention. In this
article, we introduce an intuitive formal language for specifying role-based
authorization constraints named RCL2000 including its basic elements, syntax
and semantics. We show how previously identified role-based authorization
constraints such as separation of duty (SOD) can be expressed in this language,
and that there are other significant SOD properties that have not been
previously identified in the literature. Our work indicates that there are many
alternate formulations of even the simplest SOD properties, with varying degree
of flexibility and assurance. So this language provides us a rigorous foundation
for systematic study of role-based authorization constraints.

Keywords: RBAC, Constraints, RCL2000, SOD, DSOD.

1 Introduction

Role-based access control (RBAC) has emerged as a widely accepted alternative to
classical discretionary and mandatory access controls. RBAC regulates the access of
users to information and system resources on the basis of activities that users need to
execute in the system, and requires the identification of roles in the system. Since
roles in an organization are relatively persistent with respect to user turnover and task
reassignment, RBAC provides a powerful mechanism for reducing the complexity,
cost, and potential for error in assigning permissions to users within the organization.
Because roles within an organization typically have overlapping permissions, RBAC
models include features to establish role hierarchies, where a given role can include
all of the permissions of another role. Another fundamental aspect of RBAC is
authorization constraints (also simply called constraints). Although the importance of
constraints in RBAC has been recognized for a long time [1], they have not received
much attention in the research literature, while role hierarchies have been practiced
and discussed at considerable length.

In this article, our focus is on constraint specifications, that is, on how constraints
can be expressed, whether in natural languages, such as English, or in more formal
languages. Natural language specification has the advantage of ease of comprehension
by human beings, but may be prone to ambiguities, and the specifications do not lend
themselves to the analysis of properties of the set of constraints.

 Authorization Constraints Specification of RBAC 267

To specify these constraints we introduce the specification language RCL2000 (for
Role-Based Constraints Language 2000, pronounced Ríckle2000) which is the
specification language for role-based authorization constraints [2]. In this article, we
describe its basic elements, syntax, and the formal foundation of RCL2000. RCL2000
is a substantial generalization of RSL99 [Ahn and Sandhu 1999], which is the earlier
version of RCL2000. It encompasses obligation constraints in addition to the usual
separation of duty and prohibition constraints.

2 Role-Based Constraints Language (RCL 2000)

RCL2000 is defined in context of the well-known family of models for RBAC of
Sandhu et al. This model has become a widely cited authoritative reference and is the
basis of a standard currently under development by the National Institute of Standards
and Technology. Here we use a slightly augmented form of the model illustrated in
Figure 1. We decompose permissions into operations and objects to enable formulation
of certain forms of constraints. Also in Figure 1 we drop the administrative roles since
they are not germane to RCL2000.

Fig. 1. Basic elements and system functions

Constraints are an important aspect of role-based access control and are a powerful
mechanism for laying out higher-level organizational policy. The importance of
flexible constraints to support emerging applications has been recently discussed by
many scholars. Consequently, the specification of constraints needs to be considered.
To date, this topic has not received much formal attention in the context of role-based
access control. A notable exception is the work of Giuri and Iglio who defined a
formal model for constraints on role-activation. RCL2000 considers all aspects of
role-based constraints, not just those applying to role activation. RCL2000 goes
beyond separation of duty to include obligation constraints such as those used in the
constructions of Sandhu and Osborn et al. for simulating mandatory and discretionary
access controls in RBAC.

268 L. Han, Q. Liu, and Z. Yang

One of our central claims is that it is futile to try to enumerate all interesting and
practically useful constraints because there are too many possibilities and variations.
Instead, we should pursue an intuitively simple yet rigorous language for specifying
constraints such as RCL2000. The expressive power of RCL2000 is demonstrated in
Section 4, where it is shown that many constraints previously identified in the RBAC
literature and many new ones can be conveniently formulated in RCL2000.

2.1 Basic Components

The basic elements and system functions on which RCL2000 is based are defined in
Figure 2. Figure 1 shows the RBAC model which is the context for these definitions.
RCL2000 has six entity sets called users (U), roles (R), objects (OBJ), operations
(OP), permissions (P), and sessions (S). These are interpreted as in RBAC model as
discussed above. OBJ and OP are not in RBAC model. OBJ is the passive entities that

—U=a set of users,{u1,…,un}
—R=a set of roles,{r1,…,rm}
—OP=a set of operations,{op1,…,opo}
—OBJ=a set of objects,{obj1,…,objr}
—P=OP J a set of permissions,{p1,…,pq}
—S=a set of sessions,{s1,…,sr}
—RH R Ris a partial order on R called the role hierarchy or role dominance relation,written as ≤
—UA U R, a many-to-many user-to-role assignment relation
—PA P R=OP OBJ R, a many-to-many permission-to-role assignment relation
—user :S U,a function mapping each session si to the single user.

user: R U, a function mapping each role ri to a set of users.

—roles :U P S r, a function mapping the set U,P and S to a set of roles R.
roles*: U P S r, extends roles in presence of role hierarchy.

roles(ui)={r R|(ui, r) U
roles*(ui)={r R|(r’≥r)[(ui, r’) U
roles(pi)={r R|(pi, r) P
roles*(pi)={r R|(R’≤r)[(pi, r’) P
roles(si)={r R|(sessions(si),r) U
roles*(si)={r R|(R’≥r)[r’ roles(si)

—sessions: U 2s, a function mapping each user ui to a set of sessions
—permissions :R p, a function mapping each role ri to a set of permissions.

—permissions*: R p, extends permissions in presence of role hierarchy.
permissions(ri)={p P|(p,ri) PA}
permissions*(ri)={p P|(r≤ri)[(p,ri) PA]}

—Operations: R OBJ 2OP, a function mapping each role ri and
object obji to a set of operations

Operations(ri,obji) ={op OP|(op,obji,ri) PA}
—object: P OBI, a function mapping each permissions pi to a set of objects

Fig. 2. Basic elements and system functions

 Authorization Constraints Specification of RBAC 269

contain or receive information. OP is an executable image of a program, which upon
execution causes information flow between objects. P is an approval of a particular
mode of operation to one or more objects in the system.

2.2 Additional Elements

Additional elements and system functions used in RCL2000 are defined in Figure 3.
The precise meaning of conflicting roles, permissions, and users will be specified as
per organizational policy in RCL2000. For mutually disjoint organizational roles such
as those of purchasing manager and accounts payable manager, the same individual is
generally not permitted to belong to both roles. We defined these mutually disjoint
roles as conflicting roles. We assume that there is a collection CR of sets of roles that
have been defined as conflicting.

Fig. 3. Additional elements and nondeterministic functions

The concept of conflicting permissions defines conflict in terms of permissions
rather than roles. Thus the permission to issue purchase orders and the permission to
issue payments are conflicting, irrespective of the roles to which they are assigned.
We denote sets of conflicting permissions as CP. As we show, defining conflict in
terms of permissions offers greater assurance than defining it in terms of roles.
Conflict defined in terms of roles allows conflicting permissions to be assigned to the
same role by error (or malice). Conflict defined in terms of permissions eliminates
this possibility. In the real world, conflicting users also should be considered. For
example, for the process of preparing and approving purchase orders, it might be
company policy that members of the same family should not prepare the purchase
order, and also be a user who approves that order.

RCL2000 has two nondeterministic functions, oneelement and allother. The
oneelement(X) function allows us to get one element Xi from set X. We usually write
oneelement as OE. Multiple occurrences of OE(X) in a single RCL2000 statement all
select the same element Xi from X. With allother(X) we can get a set by taking out
one element. We usually write allother as AO. These two nondeterministic functions
are related by context, because for any set S, {OE(S)}U AO=S, and at the same time,
neither is a deterministic function.

In order to illustrate how to use these two functions to specify role-based
constraints, we take the requirement of the static separation of duty (SOD) property
which is the simplest variation of SOD [3]. For simplicity assume there is no role

270 L. Han, Q. Liu, and Z. Yang

hierarchy (otherwise replace roles by roles*). Requirement: No user can be assigned
to two conflicting roles. In other words, conflicting roles cannot have common users.
We can express this requirement as below.

Expression: |roles (OE (U))I OE(CR)| ≤ 1
OE(CR) means a conflicting role set and the function roles(OE(U)) returns all roles that
are assigned to a single user OE(U). Therefore this statement ensures that a single user
cannot have more than one conflicting role from the specific role set OE(CR). We can
interpret the above expression as saying that if a user has been assigned to one
conflicting role, that user cannot be assigned to any other conflicting role. We can also
specify this property in many different ways using RCL2000, such as OE(OE
(CR)) ∈ Roles(OE(U)) ⇒ AO(OE(CR)) I roles(OE(U))= φ or user(OE(OE(CR)))

I User(AO(OE(CR)))=φ .

The expression |roles (OE (U))I OE(CR)| ≤ 1 specifies dynamic separation of
duties (DSOD) applied to active roles in a single session as opposed to static
separation applied to user-role assignment. Dynamic separation applied to all sessions
of a user is expressed by |roles(sessions(OE (U)))I OE(CR)| ≤ 1.

A permission-centric formulation of separation of duty is specified as
roles(OE(OE(CP))) I roles(AO(OE(CP)))= φ .The expression roles(OE(OE(CP)))

means all roles that have a conflicting permission from, say cpi, and
roles(AO(OE(CP))) stands for all roles that have other conflicting permissions from
the same conflicting permission set cpi. This formulation leaves open the particular
roles to which conflicting permissions are assigned but requires that they be distinct.
This is just a sampling of the expressive power of RCL2000 discussed in Section 4.

2.3 Syntax of RCL 2000

The syntax of RCL 2000 is defined by the syntax diagram and grammar given in
Figure 4. The rules take the form of flow diagrams. The possible paths represent the
possible sequence of symbols. Starting at the beginning of a diagram, a path is
followed either by transferring to another diagram if a rectangle is reached or by
reading a basic symbol contained in a circle. Backus Normal Form (BNF) is also used
to describe the grammar of RCL2000 as shown in the bottom of Figure 4. The
symbols of this form are “::=” meaning “is defined as” and “|” meaning “or.” Figure 4
shows that RCL2000 statements consist of an expression possibly followed by
implication (⇒) and another expression. Also RCL2000 statements can be
recursively combined with a logical AND operator (∧). Each expression consists of a
token followed by a comparison operator and token, size, set, or set with cardinality.
Also a token itself can be an expression. Each token can be just a term or a term with
cardinality. Each term consists of functions and sets including set operators. The sets
and system functions described earlier in Section 2.1 are allowed in this syntax. Also,
we denote oneelement and allother as OE and AO, respectively.

 Authorization Constraints Specification of RBAC 271

Fig. 4. Syntax of language

3 Formal Semantics of RCL2000

In this section, the formal semantics for RCL2000 is discussed. We do so by
identifying a restricted form of first-order predicate logic called RFOPL which is
exactly equivalent to RCL2000. Any property written in RCL2000, called a RCL2000
expression, can be translated to an equivalent expression in RFOPL and vice versa.
The translation algorithm, namely, Reduction, converts a RCL2000 expression to an
equivalent RFOPL expression. The Reduction algorithm eliminates AO function(s)
from a RCL2000 expression in the first step. Then we translate OE terms iteratively
introducing universal quantifiers from left to right. If we have nested OE functions in
the RCL2000 expression, translation will start from the innermost OE terms. This
algorithm translates the RCL2000 expression to an RFOPL expression in time O(n),
supposing that the number of OE terms is n.

272 L. Han, Q. Liu, and Z. Yang

For example, the following expression can be converted to an RFOPL expression
according to the sequences below.

Example 1. OE(OE(CR))∈roles(OE(U))⇒AO(OE(CR))I roles(OE(U))=φ

(1)OE(OE(CR))∈roles(OE(U)⇒ (OE(CR)-{OE(OE(CR))}I roles(OE(U))=φ

(2)∀ cr∈CR : OE(cr)∈roles(OE(U))⇒ (cr-{OE(cr)})I roles(OE(U))=φ

(3)∀ cr∈CR, ∀ r∈cr : r∈roles(OE(U))⇒ (cr-{r})I roles(OE(U))=φ

(4)∀ cr∈CR, ∀ r∈cr,∀ u∈U : r∈roles(u)⇒ (cr-{r})I roles(u) =φ

The resulting RFOPL expression will have the following general structure.

(1) The RFOPL expression has a (possibly empty) sequence of universal
quantifiers as a left prefix, and these are the only quantifiers it can have. We call this
sequence the quantifier part.

(2) The quantifier part will be followed by a predicate separated by a colon(:) (i.e.,
universal quantifier part : predicate).

(3) The predicate has no free variables or constant symbols. All variables are
declared in the quantifier part (e.g., ∀ r∈R, ∀ u∈U: r∈roles(u)).

(4) The order of quantifiers is determined by the sequence of OE elimination. In
some cases this order is important so as to reflect the nesting of OE terms in the
RCL2000 expression. For example, in ∀ cr∈CR, ∀ r∈cr, ∀ u∈U: predicate; the
set cr, which is used in the second quantifier, must be declared in a previous quantifier
as an element, such as cr in the first quantifier.

(5) Predicate follows most rules in the syntax of RCL2000 except the term syntax
in Figure 4.

Because the reduction algorithm has a nondeterministic choice for reduction of the
OE term, we may have several RFOPL expressions that are translated from a
RCL2000 expression.

4 Expressive Power of RCL2000

In this section, we demonstrate the expressive power of RCL2000 by showing how it
can be used to express a variety of separation of duty properties. As a security
principle, SOD is a fundamental technique for prevention of fraud and errors, known
and practiced long before the existence of computers [4]. It is used to formulate multi-
user control policies, requiring that two or more different users be responsible for the
completion of a transaction or set of related transactions. The purpose of this principle
is to minimize fraud by spreading the responsibility and authority for an action or task
over multiple users, thereby raising the risk involved in committing a fraudulent act
by requiring the involvement of more than one individual. A frequently used example
is the process of preparing and approving purchase orders. If a single individual
prepares and approves purchase orders, it is easy and tempting to prepare and approve
a false order and pocket the money. If different users must prepare and approve
orders, then committing fraud requires a conspiracy of at least two, which
significantly raises the risk of disclosure and capture.

 Authorization Constraints Specification of RBAC 273

Although separation of duty is easy to motivate and understand intuitively, so far
there is no formal basis for expressing this principle in computer security systems.
Several definitions of SOD have been given in the literature. For the purpose of this
article, we use the following definition. Role-based separation of duty ensures SOD
requirements in role-based systems by controlling membership in, activation of, and
use of roles as well as permission assignment.

There are several papers in the literature over the past decades that deal with
separation of duty. During this period various forms of SOD have been identified.
Attempts have been made to systematically categorize these definitions. However,
this work has significant limitations. It omits important forms of SOD including
session-based dynamic SOD needed for simulating lattice-based access control and
Chinese Walls in RBAC. It also does not deal with SOD in the presence of role
hierarchies. Moreover, as shown, there are additional SOD properties that have not
been identified in the previous literature. Here, we take a different approach to
understanding SOD. Rather than simply enumerating different kinds of SOD we show
how RCL2000 can be used to specify the various separation of duty properties.

4.1 Static SOD

Static SOD (SSOD) is the simplest variation of SOD. In Table 1, we show our
expression of several forms of SSOD. These include new forms of SSOD that have
not previously been identified in the literature. This demonstrates how RCL2000 helps
us in understanding SOD and discovering new basic forms of it.

Property 1 is the most straightforward property. The SSOD requirement is that no
user should be assigned to two roles which are in conflict with each other. In other
words, it means that conflicting roles cannot have common users. RCL2000 can
clearly express this property, which is the classic formulation of SSOD. It is a role-
centric property.

Property 2 follows the same intuition as Property 1, but is permission-centric.
Property 2 says that a user can have at most one conflicting permission acquired
through roles assigned to the user. Property 2 is a stronger formulation than Property 1,
which prevents mistakes in role permission assignment. This kind of property has not
been previously mentioned before [5]. RCL2000 helps us discover such omissions in
previous work. In retrospect, Property 2 is an “obvious property” but there is no
mention of it in over a decade of SOD literature. Even though Property 2 allows more
flexibility in role-permission assignment since the conflicting roles are not predefined,
it can also generate roles that cannot be used at all. For example, two conflicting
permissions can be assigned to a role. Property 2 simply requires that no user can be
assigned to such a role or any role senior to it, which makes that role quite useless.
Thus, Property 2 prevents certain kinds of mistakes in role-permissions but tolerates
others.

Property 3 eliminates the possibility of useless roles with an extra condition,
|permissions*(OE(R))I OE(CP)| ≤ 1. This condition ensures that each role can have
at most one conflicting permission without consideration of user-role assignment.

Property 4 can be viewed as a reformulation of Property 3 in a role-centric manner.
Property 3 does not stipulate a concept of conflicting roles. However, we can interpret
conflicting roles to be those that happen to have conflicting permissions assigned to

274 L. Han, Q. Liu, and Z. Yang

them. Thus, for every cpi, we can define cri ={r∈R | cpiI permissions(R) ≠ φ }. With
this interpretation, Properties 3 and 4 are essentially identical. The viewpoint of
Property 3 is that conflicting permissions get assigned to distinct roles which thereby
become conflicting, and therefore cannot be assigned to the same user. Which roles are
deemed conflicting is not determined a priori but is a side-effect of permission-role
assignment. The viewpoint of Property 4 is that conflicting roles are designated in
advance and conflicting permissions must be restricted to conflicting roles. These
properties have different consequences on how roles get designed and managed but
essentially achieve the same objective with respect to separation of conflicting
permissions. Both properties achieve this goal with much higher assurance than
Property 1. Property 2 achieves this goal with similar high assurance but allows for the
possibility of useless roles. Thus, even in the simple situation of static SOD, we have a
number of alternative formulations offering different degrees of assurance and
flexibility.

Table 1. Static separation of duty

Properties Expressions
1.SOOD-CR |roles*(OE(U))I OE(CR)| ≤ 1
2.SOOD-CP |permissions(roles*(OE(U)))I OE(CP)| ≤ 1
3.Variation of 2 (2) ∧ |permissions*(OE(R))I OE(CP)| ≤ 1
4.Variation of 1 (1) ∧ |permissions*(OE(R))I OE(CP)| ≤ 1

∧ permissions(OE(R))I OE(CP) ≠ φ ⇒OE(R)I OE(CR) ≠ φ

5.SOOD-CU (1) ∧ |user(OE(CR))I OE(CU)| ≤ 1
6.Yet another variation (4) ∧ (5)

Property 5 is a very different property and is also new to the literature. With a

notion of conflicting users, we identify new forms of SSOD. Property 5 says that two
conflicting users cannot be assigned to roles in the same conflicting role set. This
property is useful because it is much easier to commit fraud if two conflicting users
can have different conflicting roles in the same conflicting role set. This property
prevents this kind of situation in role-based systems. A collection of conflicting users
is less trustworthy than a collection of non-conflicting users, and therefore should not
be mixed up in the same conflicting role set. This property has not been previously
identified in the literature.

We also identify a composite property that includes conflicting users, roles, and
permissions. Property 6 combines Properties 4 and 5 so that conflicting users cannot
have conflicting roles from the same conflict set while ensuring that conflicting roles
have at most one conflicting permission from each conflicting permission set. This
property supports SSOD in user-role and role-permission assignment with respect to
conflicting users, roles, and permissions.

 Authorization Constraints Specification of RBAC 275

4.2 Dynamic SOD

In RBAC systems, a dynamic SOD property with respect to the roles activated by the
users requires that no user can activate two conflicting roles. In other words, conflicting
roles may have common users but users can not simultaneously activate roles that are in
conflict with each other. From this requirement, we can express user-based Dynamic
SOD as Property 1. We can also identify a session-based DSOD property that can apply
to the single session as Property 2. We can also consider these properties with
conflicting users such as Properties 1-1 and 2-1. Additional analysis of DSOD
properties based on conflicting permissions can also be pursued as was done for SSOD.

Table 2. Dynamic separation of duty

Properties Expressions
1.Used-based DSOD |Roles*(sessions(OE(U)))I OE(CR)| ≤ 1
1-1.Used-based DSOD with CU |Roles*(sessions(OE(OE(CU))))I OE(CR)| ≤ 1
2.Session-based DSOD |Roles*(OE(sessions(OE(U))))I OE(CR)| ≤ 1
2-2.Session-based DSOD with CU |Roles*(OE(sessions(OE(OE(CU)))))I OE(CR)| ≤ 1

5 Conclusion

In this article, we have described the specification language RCL2000. This language
is built on RBAC components and has two nondeterministic functions OE and AO.
We have given a formal syntax and semantics for RCL2000. Any property written in
RCL2000 may be translated to an expression written in a restricted form of first order
predicate logic, which we call RFOPL.

There is room for much additional work with RCL2000 and similar specification
languages [6]. The language can be extended by introducing time and state. Analysis of
RCL2000 specifications and their composition can be studied. The efficient enforcement
of these constraints can also be investigated. A user-friendly front-end to the language
can be developed so that it can be realistically used by security policy designers.

Acknowledgments. This work was supported by National Science Foundation under
Grant No:60673010 and supported by the Natural Science Foundation of Hubei Province
under Grant No:2006ABC011 and supported by National Great Project of Scientific and
Technical Supporting Programs Funded by Ministry of Science & Technology of China
During the 11th Five-year Plan under Grant No: 2006BAH02A24.

References

1. Chen, F., Sandhu, R.S.: Constraints for Role-based Access Control. In: Proceedings of the
First ACM Workshop on Role-Based Access Control, pp. 39–46. ACM Press, New York
(1995)

2. Ahn, G.J., Sandh, R.: The RSL99 Language for Role-based Separation of Duty Constraints.
In: Proceedings of 4th ACM Workshop on Role-Based Access Control, pp. 43–54. ACM
Press, New York (1999)

276 L. Han, Q. Liu, and Z. Yang

3. Giuri, L., Iglio, P.: A Formal Model for Role-based Access Control with Constraints. In:
Proceedings of 9th IEEE Workshop on Computer Security Foundations, pp. 136–145. IEEE
Press, Piscataway, NJ (1996)

4. Gligor, V.D., Gavrila, S., Ferraiolo, D.: On the Formal Definition of Separation-of-duty
Policies and Their Composition. In: Proceedings of the 1998 IEEE Computer Society
Symposium on Research in Security and Privacy, pp. 172–183. IEEE Computer Society
Press, Los Alamitos, CA (1998)

5. Jaeger, T.: On the Increasing Importance of Constraints. In: Proceedings of 4th ACM
Workshop on Role-Based Access Control, pp. 33–42. ACM Press, New York (1999)

6. Osborn, S., Sandhu, R., Munawer, Q.: Configuring Role-based Access Control to Enforce
Mandatory and Discretionary Access Control Policies. ACM Trans. Inf. Syst. Secur. 3(2)
(2000)

Dynamic Access Control Research for

Inter-operation in Multi-domain Environment
Based on Risk�

Zhuo Tang, Ruixuan Li, Zhengding Lu, and Zhumu Wen

School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
hust tz@126.com, {rxli,zdlu}@hust.edu.cn, zoomer@thinkbank.com.cn

Abstract. For the complexity of the multi-domain environment and the
ceaseless evolvement of the information secure sharing, the traditional ac-
cess control method can not ensure the absolute security for the exchange
of data resources. Through introducing the concept of risk, this paper
proposes a dynamic access control model for multi-domain environment
based on risk of inter-operations. The risk rank of an access policy can
be calculated by the history of the inter-operations among domains, the
security degree of the objects and the safety factor of the access events.
Through adjusting the access policies which be considered the high risk,
the risk in the system can be controlled in real time. The security analy-
sis shows that this method can reinforce the facility of the access control
and the security of the multi-domain environment.

1 Introduction

With the increase in information and data accessibility, there is a growing con-
cern for security and privacy of data. The realization of the connections and
the inter-operations among the different data sources under the distributed het-
erogeneous environment is becoming the practical problem. There is a growing
concern for the security problem for the inter-operations between multi-domains.
More and more researches try to resolve the defense for the vicious behaviors
through the economic methods. In fact, recent research in these directions has
suggested some economical models for a wide range of secure distributed sys-
tems, including a payment based security system for mobile agents [1] and game
based model for secured grid computing [2]. However, risk remains un-quantified
in these proposals. In fact, there exists an emerging consensus that every security
question is indeed an economical question concerning the utility of the under-
lying system [3]. For example, it is easy to show that in a mobile agent based
e-commerce system, both the protection of agents and hosts have a direct impact
� This work is partially supported by National Natural Science Foundation of China

under Grant 60403027, Natural Science Foundation of Hubei Province under Grant
2005ABA258, Open Foundation of State Key Laboratory of Software Engineering
under Grant SKLSE05-07.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 277–290, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

278 Z. Tang et al.

on the utility: attacks on a host by malicious agents will cause loss of commercial
secrets such as customers private information, downtime to the system, loss of
customers, which will eventually be counted as utility loss. Attacks on agents
will result in similar consequences that will also lead to the lost of utility. Thus
utility maximization and risk minimization are important issues in the design
of a secure distributed system if we seek to gain maximum economical benefits
from the underlying system. This is also an important target of the distributed
system security. But at present, there are little literatures to demonstrate the
actual signification of the risk of distributed system [4].

In the economic area, there exist the consanguineous relations between the risk
and trust. Mayer and Rousseau [5] discussed the difference and the relationship
between the risk and trust. Jarvenpaa [6] proposed definitely: trust can influence
the risk in a certain extent. Further more, it can influence the subjects’ behaviors.
For example, there is the lower risk when you loan money to the familiar than
stranger. Moreover, this literature considers that the extent of trust can influence
the cognitive extent of the risk.

The objective of the inter-operations is to offer the rational distributing and
effective share of the resource, and the cooperation of the distributed systems.
It means the ability of the two software components to communicate and co-
operate to complete a common task. It contains two meanings: the basic and
the application. The basic inter-operations mean the communications and coop-
eration among the different platforms. And the applied inter-operations mean
the cooperation among the distributed application components which above the
computational platforms. This paper mainly discusses the later.

The multi-domain environment has the characteristic of dynamic and inde-
termination. As the frequent changes of the security policies in individual au-
tonomy, the changes of the relationship among the domains, even the birth and
the death of the individual domains, the any security polices can not insure the
absolute security of the data resource in the process of inter-operations. For the
access control method of the traditional model, the subject sometimes can use
its permissions constantly once been authorized. It hardly satisfies the dynamic
changes of the multi-domain environment. And it will bring many security risks
and hidden trouble to the inter-operations among multi-domain environment.

In order to decrease the risk of inter-operations, for the problems of trust and
risk of the security inter-operations under the application tier, which base the
mappings between the users and roles in the different domains, this paper pro-
poses a risk based dynamic access control model for multi-domain environment.
In this model, through calculating the trust degree between the subjects firstly,
we can ascertain the risk extent when a subject in one domain has an operation
to the objects in the other domains. Therefore, we can receive the risk degree of
the inter-operations. Using this risk degree, we can adjust the subjects’ access
privilege dynamically. The risky permissions will be revoked, and the utility of
the system will be maximized.

The rest of the paper is organized as follows. Section 2 describes the re-
lated works. Section 3 presents algorithms for the calculating the risk of the

Dynamic Access Control Research 279

inter-operations. Section 4 describes the dynamic access control model for multi-
domain environment, followed by the conclusion in Section 5.

2 Related Works

In the recently 20 years, people have acquired the plentiful achievement for the
research of the access control. Many access control models have been proposed.
The most popular models include discretionary access control (DAC), mandatory
access controls (MAC) and role based access control (RBAC). In the RBAC
family which be proposed by Sandhu in 1996[7], the users’ privilege is related
with their roles, and the users acquire their privilege through roles. A role is a
permission set for a special work station. When the users’ privilege needs to be
changed, we can do it by revoking the roles or re-distributing the user’s roles.

Michael J. Covington et al [8] have proposed the Generalized Role Based Ac-
cess Control (GRBAC) model. In this model, they extend the traditional RBAC
by applying the roles to all the entities in a system. (In RBAC, the role con-
cept is only used for subjects). By defining three types of roles, i.e., Subject
roles, Environment roles, and Object roles, GRBAC uses context information as
a factor to make access decisions. Guangsen Zhang et al. [9] also uses context
parameters in their dynamic role-based access control model under the two key
ideas: (1) A user‘s access privileges should be changed when the user’s context
changes. (2) A resource must adjust its access policy when the environment con-
text information (e.g., network bandwidth, CPU usage, memory usage) changes.
These above two papers make the access control dynamic and flexible but the
decision-making process is not as powerful and precise as that in our model.
They did not consider the aspect of security in making-decision process and the
impact of security problems on the system.

The Nathan Dimmock’s paper [10] uses the concept of outcome to calculate
cost for each outcome and risk value. Comparing to this paper, they do not
consider the context for risk assessment. So it loses the flexibility characteristic
in evaluating risk. They did not consider risk as an important factor in their
access control mechanism and they did not use risk directly in making decision.

There is little attention to the trust and risk in the access control research
[11]. The term trust management system was introduced by Blaze et al. in [12],
but the solution it proposes involves an unduly static notion of trust application
programmers choose where to insert code to evaluate their notion of trust, for ex-
ample at the starting point of a given execution session. Most of the past research
combining access control with trust concepts focuses on a trust-management ap-
proach in which trust values flow in a manually defined way through access
control policy. For example, in literature [13] and [14], the mutual trust relation-
ship is founded by the continuously negotiation. Literature [15] illuminates the
relationship between the trust management and distributed access control, and
it extends the access control system of OASIS and the access control language.
So, the access policy can be decided base on the trust and risk. But the trust
mentioned in this paper is defined by the special operation, and the relationship
between risk and trust is faint in this paper.

280 Z. Tang et al.

The above access control methods mostly base the traditional model. They
are all short of the dynamic description for the subjects. With the complexity
of the system and the dynamics of the applications, the changes of the access
control objects are very large. Hence, these methods may increase the difficulty
of the authorization. These access control models all try to protect the resource
from the perspective of system. The weakness of these passive security models is
that they cannot manage the privilege according to the environment dynamically.
Once the subject acquire the privilege, it can use this privilege until it be revoked.
It can bring the risk easily.

Compared with the traditional RBAC model, the paper’s main contributions
are as follows:

1. Introducing of a concept of risk into access control area. This method can
ascertain the risk of inter-operations between the different domains in real
time through the histories of the interactive events. It is better able to adapt
to the distributed, complex, and diverse multi-domain environment.

2. Through adjusting the privilege of the subjects dynamically according to
the risk levels of the access events, the functions of the access control sys-
tem can be changed from the static protect for the resources to the dynamic
authorization. The system can detect the environment and the security ven-
ture in real time, and the permissions of the subjects are not unchangeable
anymore since be authorized. The system can identify the risky permissions
automatically and revoke them duly.

3. This method can bring the convenience to the security management. The
difference between this dynamic model and the traditional access control
models is as follows: The management for the user’s permission settings is
according to the actual events and historical records. In this way, the permis-
sion management is more convenient, and the control to the authorization
is more convincing.

3 The Risk of the Inter-operation in Multi-domains

In the traditional model of the trust relationship, trust was usually defined as a
Boolean variable, that is to say, in the session of both trust entities, one trust
another entirely, or absolutely not, there would never be middle status. For
instance, the entity A trusts entity B, but it is hard to tell how much they trust
each other. For this reason, we have to quantify their trust. In this section, firstly,
we formalize the definitions of the permissions and the operations between the
permissions in the multi-domain environment. On this basis, we introduce the
description of the trust in multi-domains.

3.1 The Formalization of the Permissions

Definition 1. Authorization Term. Authorization terms are 2-tuple of the form:
< object, accessmode >, which is denoted as < O,A > for short. It is the basic
form of the permission. The set of authorization terms is denoted as P . We have
P = {< O,A >}.

Dynamic Access Control Research 281

Definition 2. Permission Set. Permission set represents all permissions of some
subject, which is the set of the authorization terms. We can formulize it as PS.

For example, we can describe a role r1’s all permission as: PS(r1) = {< file1,
+read >,< file2,−write >}. That is to say the users, which are assigned
to r1, can read file1 and write file2. The denotation PSu can also express the
permission set of the user u. obviously, if a role r is assigned to a user u, then
PS(u) ⊇ PS(r).

In this paper, the denotation role(u) represents the role set, which is assigned
to user u. We can define the basic operators of the PS. The BNF definition for
permission set as follows:

PS = PS|PS ∪ PS|PS ∩ PS|PS − PS|SoD(PS, PS)

Where the ∪,∩ and − are the basic operation in set theory, SoD(PS1(r), PS2(r))
denotes the separation of duties, it returns PS1(r) or PS2(r) , but it can return
the PS1(r) and PS2(r) concurrently.
OS = {O/D} returns the controlled objects set for a subject. D denotes the

object’s domain. For instance OS(r1) = {file1/A, file2/A}.

3.2 The Role-Mappings Based Trust Degree Between Domains

In a typical multi-domain environment, we partition the domains into exter-
nal and local domains. The role mapping can be formalized as a 4-tuple: <
r1, d1, r2, d2 >, r1 is a role in domain d1, r2is a role in domain d2 respectively,
in general, d1 is the local domain, and d2 is the external domain. A subject in
the local domain can access the objects in the external through the inter-domain
mappings. As the mapping exhibits, the permissions of the role r1 in the domain
d1 is PS(r1) = PS(r1) ∪ PS(r2) and OS(r1) = OS(r1) ∪OS(r2).

Trust is one entity assessing to behavior credibility, reliability, integrity and
performance of other entity. Trust relationship is such a case: if the subject meets
the object’s expectation, then the subject is trustable to the object.

Definition 3. The trust degree denotes the trust extent between the different
domains which be formed by the role-mappings. Which is formalized: C (d1, d2),
depict the trust relationship between the domain d1 and d2. As its value range

rA3

rA1 rA2

Domain A

rB2

rB1

Domain B

Fig. 1. The role-mappings between two domains

282 Z. Tang et al.

is [0, 1], supposing a role-mapping < r1, d1, r2, d1, false >, C(d1, d2) = 1 means
the complete trust, that is to say the all permissions of the role r2 in the domain
d2 can be inherited by the role r1 in the domain d1; by contraries, C(d1, d2) = 0
means the complete distrust, that is to say the all permissions of the role r2 in
the domain d2 are forbidden to be inherited by the role r1 in the domain d1.

The trust degree between domains is changed according to the inter-operation
events. This is denoted by the function as follows:

δ : C × E → C (1)

Where, E denotes the set of the inter-operation events. In general, if there are
role-mappings exist between two domains, for each inter-operation, if the result
is successful, the trust degree will be strengthened; by contraries, if the result is
failed, it will be weakened.

The following subsection discusses how to found the trust relationship be-
tween two domains. In this paper, we consider the trust in the multi-domain
environment through their past transaction experiences. Considering the inter-
operations between the domain i and j, if the subject in domain i request to
access the resources in domain j, according the estimate of each event, if the
request is be satisfied, then the estimate from i to j is positive, that is denoted
as trk(i, j) = 1, by contraries, if the estimate is passive, then trk(i, j) = −1. This
paper defines the denotation sij as the appraisement for the all transactions be-
tween the domain i and j: sij =

∑

(tr(ij). Let’s use sat(i, j) to denote the total
of the positive appraisement, while the denotation unsat(i, j) is used to denote
the total of the passive appraisement. Then,

sij = sat(i, j)− unsat(i, j) (2)

For the convenience of the denotation, we mapping the value of the trust value
to [0, 1]:

C(i, j) =
{ sij

sat(i,j)+unsat(i,j) sij ≥ 0
0 otherwise

(3)

In this way, every domain maintains local trust degrees of the other domains
which the local ever affiliates with. We can use a vector to describe the trust of a
local domain to the externals: T = {C(i, 1), c(i, 2), . . . , C(i, n)}, n is the number
of the external domains.

3.3 The Risk of the Inter-operations in Multi-domain Environment

In general, a domain can maintain the trust vector for the externals domains
which it interact with. As mentioned above, in the multi-domain environment,
the risk of the inter-operations is up to the trust value of the domains C(i, j),
the security level of the operation object Os, and the safety factor of the access
action As. The following function defines the risk of the interoperation between
the different domains:

Dynamic Access Control Research 283

Definition 4. Ri = F (C(i, j), Os, As). The parameter Osdenotes the security
level of the operation object, the more high level the role, the more security level
the objects can be accessed. The Asdenotes the security extent of the access op-
eration. In general, the risk of the inter-operations will be increased with the
heightener of the security level of the objects. Reversely, it will be decreased with
the heightener of the trust between the interrelated domains and the safety factor
of the access action.

The function of the risk for the inter-operations is defined as follows:

F (C(i, j), Os, As) = Os × (1− C(i, j))× (1 −As) (4)

By (1), we can see the value of Ri is in the range of [0, 1]. Where, the value 0
denotes no risk, and the value 1 denotes the maximal risk. The following is the
algorithm for the security level of all operation objects in the special domain. The
basic idea is that the leaf nodes in a role hierarchy only access the objects with
the lowest security level in a special domain. That is to say, if the objects can be
only accessed by the senior role, their security level is higher in the domain. The
detailed algorithm is as follows. The parameter k is the basic security parameter
in a special domain. k is an integers. k ≥1.

Algorithm 1. The calculation for the security level of the access control objects.
program Obj Security level()
begin
1. Searching the role hierarchy, find the deepest leaf nodes.
2. Setting the value of the security level of the objects which can be controlled by

the leaf node as k. While, the “visited” flags of the nodes are modified as “already
visited”.

3. Finding the directly senior up from the leaf node, the security level of the
objects which directly under the next senior node is on the basis of an increase for
the objects controlled by the directly junior nodes.

4. Searching the all unvisited nodes down from the root node, the security level
of the objects which directly under the next junior node is on the basis of a decrease
for the objects controlled by the directly senior nodes.

5. Adjusting the security level of all nodes in the role hierarchy. The value of
security level of all nodes is divided by the value of the root to be mapped to the
range [0, 1]

end.

There is a role-mapping < A4, A,B2, B, false > exist between the domains in
the figure 2. In a moment, a user in the domain A requests the operation “write”
to the object O5 which is in the domain B: < O5, write >. We set the basic
security parameter k in this example as 1. Firstly, according to algorithm 1, We
set security level of the directly controlled objects of the deepest leaf nodes B4 ,
O7 and O8, as 1. Followed up, we can get that the security level of the directly
controlled objects of B2 is 2, and the security level of the directly controlled
objects of B1 is 3. By the step 5, we can get the security level of O5:

(k+1)
(k+2) =

2
3 = 0.67.

284 Z. Tang et al.

O1 O2 O3

O4
O5 O6

O7 O8 O9

B2

B4 B5

B3

B6

Domain B Domain A

U1

B1
U2

U3 U4

U5
O10

O11

A1

A2 A3 A4

A5 A6 A7

Fig. 2. The inter-operations between domain A and domain B

Table 1. The historical inter-operations between domain A and domain B

Sequence Subject Object Operation Status

1 U1 O5 read successful
2 U2 O6 write successful
3 U3 O7 read failed
4 U4 O5 execute successful
5 U5 O8 copy failed
6 U1 O9 write successful
7 U1 O10 read successful

The safety factor for all access events in this example, which are denoted
as read, copy, write, execute, is set as (0.8, 0.6, 0.4, 0.2) respectively. We suppose
that the inter-operation history between domain A and B is as the table 1 shows.
There are seven access events which the subject is in domain A and the object is
in domain B. And five of them are successful and two failed. By the above method
to compute the trust degree between domain A and B, we have: (5−2)

7 = 0.43.
So, According to (4), we can get the risk of the above 2-tuple < O5, write > as:

Ri(Os, C(i, j), A) = Os×(1−C(i, j))×(1−As) = 0.67×(1−0.43)×(1−0.4) = 0.23

Thus, we can educe the risk rank in the multi-domain environment. In this
instance, the risk is divided as 5 levels, which are as {potty, little, general, grave,
verygrave}. The mapping from risk values to the risk ranks is as table 2 shows.
This table can be configured by the administrators according to the special
context.

Table 2. The mapping from risk values to the risk ranks

Sequence ranks values description

1 I 0 ≤ Ri < 0.2 potty
2 II 0.2 ≤ Ri < 0.4 little
3 III 0.4 ≤ Ri < 0.6 general
4 IV 0.6 ≤ Ri < 0.8 grave
5 V 0.8 ≤ Ri < 1.0 very grave

Dynamic Access Control Research 285

We can conclude from the table 2 that the above operation < O5, write >, a
user in the domain A requests the operation “write” to the object O5 which is in
the domain B, it’s risk rank is II. This means that the operation< O5, write > has
little risk. It may bring the failure for the operation. In the following sections, we
will discuss how to avoid the risk through adjusting the privileges of the subjects.

4 The Risk-Based Dynamic Access-Control Model for
Multi-domain

4.1 The Model of MD-R2BAC

The traditional security mechanism is generally designed for static network and
closed system. In these systems, the authorizations of the users are determinate,
and the relationship between user’s privileges and resources are found early.
Based this, the protected resource are only be accessed by the authorized users.
As these security models are simpler, we can call them traditional security model.
But in the multi-domain environment, as the requestor and the provider of the
resource can be in the different domains, because there is no absolute trust be-
tween these domains, it can not satisfy the all requests of the requestors through
the traditional access control mechanism. Further more, the multi-domain en-
vironment changes frequently, and the real-time update is also unpredictable,
so, the requestor and the provider of the resource may do not know each other.
Therefore, the traditional models do not match the multi-domain environment
well. This paper proposes a risk-based dynamic access-control model through
importing the risk of the event context to the policies of RBAC.

The authorization of the traditional is general denoted as 3-tuple:< S,O,A >,
where S represents the subject, O represents the object, and A is the set of the
actions. If a 3-tuple < s, o, a > exist, that is to say, the subject S can do the
operation A on the object O. These 3-tuples are all predefined in the security
system, and they are effective of all times. For the privilege constrain to the
users, this access control method is passive and negative.

U Ro

RiD

UA

DD

P

UD RD

RP

RR

Fig. 3. The model of MD-R2BAC

286 Z. Tang et al.

The following definitions contain some elements in the literature. The rela-
tionship between these definitions is as the figure 3.

Definition 5. The variables and the relationships in this model.

1. MD−R2BAC = (U,Ro, P,D,Ri), where U is the set of the users, Ro is the
set of the roles, P is the set of the permissions, D is the set of the domains,
and Ri denotes the set of the risk banks.

2. User Assignment. This is a many-to-many relationship between users and
roles. It is denoted as UA, UA ⊆ U ×Ro. This function can be expressed as
assigned− user(ro) = {u ∈ U |(u, ro) ∈ UA}.

3. Permission Assignment. This is a one-to-many relationship from roles to
permissions. And it is a function which from the roles and risk ranks to
the permissions. It is denoted as RP , Ro × Ri → P . The function can be
expressed as: assigned− permission(ro : Ro, ri : Ri)→ 2P .

4. Role Relation. This relationship contains the hierarchy and inheriting be-
tween the roles. We denote the set of the relationship of roles as RR, RR ⊆
R×R.

5. Risk between Domains. This is a mapping from the inter-operation between
the domains to the risk rank. It is a function from a special inter-operation
event to a certain risk rank. We can denote as DR : D×D×P ′ → Ri, P ′ ⊆
P .

6. User Hypotaxis. This is a one-to-many relationship from roles to domains.
It is denoted as RD : R→ D.

Each user and role in the model must belong to a special domain, and a user or
role can not be subject to two or more domains synchronously. This constrain
is defined as follows:

– Constrain 1. Each user in the model must only subordinate to only domain.

< u, d1 >∈ UD∩ < u, d2 >∈ UD → d1 = d2

– Constrain 2. Each role in the model must only subordinate to only domain.

< r, d1 >∈ RD∩ < r, d2 >∈ RD → d1 = d2

The dynamic distribution of permission in the MD-R2BAC is mainly embod-
ied in relation of DR, RP. The ration DR can acquire the trust degree of two
domains through the inter-operation history. All the more, it can acquire the risk
rank of an access event according to the security extent of the access operation
and the security level of the operation object. Where, the access event between
different domains can also be denoted as 6-tuple: ¡S, O, A, D1, D2, ri¿. The
meaning of the elements is the same as the authorization item. Hence, in the
relation DR, we have P ′ ⊆ P .

RP is a real-time implementation of the dynamic function. It can adjust the
authorization to a subject in a domain duly according to the risk rank of the
inter-operation. This paper will detail the authorization and the adjustment in
the following sections.

Dynamic Access Control Research 287

4.2 The Policy and Mechanism of the Access Control in
MD-R2BAC Model

MD-R2BAC is an access control model which can be changed with the inter-
operation history between different domains. It is a dynamic process that the
users acquire the permissions through the roles. In this process, system can
adjust the subject’s permissions according to the risk rank of its operation. In
this way, the access control implementation process can be divided into three
steps: privilege distribution, ascertaining the risk rank, and dynamic adjustment
of the privilege.

Privilege distribution. The privilege distribution includes that the admin-
istrator assigns the roles to user and predefine the permissions of the roles.
Referred to above, the users’ permissions can be denoted as a 2-tuple :¡ u, ro¿,
the set is formalized as ua(u,ro). We use UA(ro) to denote that assigning the
role ro to a set of users

UA(ro) = {ua(ui, ro)|ua(ui, ro) ∈ UA(i = 1, 2, . . . , n)}
In the multi-domain environment, the privilege usually performs as the power

of the subject to access the objects which in the different domain. The basic
authorization item can be formalized as the 6-tuple < s, o, a, d1, d2, ri >,which
is denoted as atomp(s, o, a, d1, d2, ri). It means that a subject s in the domain
d1 can do the operation a to the object o which is in the domain d2, and the
risk rank of this operation is ri in the current context.

RP (ro) = {atomp(s, o, a, d1, d2, ri)|atomp(s, o, a, d1, d2, ri) ∈ P}

Ascertaining the risk rank. The risk rank ri in authorization item is a func-
tion of the access history events in the multi-domain environment. We have
detail the process of calculation for the risk rank in the third part of this paper.
The function which acquires the risk rank of an inter-operation is recorded as
risk count(s,o,a,d1, d2). It returns the risk rank of a subject s in the domain d1

do the operation a to the object o which is in the domain d2

Ri = {ri|ri = risk count(s, o, a, d1, d2)}

Dynamic adjustment of the privilege. The prominent character of MD-
R2BAC is that it can adjust the subject’s privilege according to the risk rank of
its operation to the objects. We can set a risk threshold RV between two different
domains. For the subject which acquire the access permissions to the objects in
the other domains through the role-mappings, we can check each authorization
items, and revoke the items whose risk rank over the predefined threshold RV.

The dynamic adjustment of the privilege mainly reflected in the relation of
privilege distribution RP. It is a function which from the roles and risk ranks to
the permissions.

F (Ro,Ri)→ P, P = {atomp1, atomp2, . . . , atompn},
this is the initial permission set.

288 Z. Tang et al.

G(Ro,Ri, P1)→ P2, P1 ⊆ P, P2 ⊆ P, P2 = P − P1,

G is the revoke function.
Return to the example in the third section, suppose that the initial permission

set of the role A4 in the domain A to the objects in the domain B is PS(A4) =
{< O5, write >,< O6, read >,< O7, read >,< O8, write >,< O9, read >, we
can acquire the risk value of these five authorization items:

risk count(A4, O5,write,A,B) = Ri(Os(O5),C(A,B),As(write)) = 0.23,the risk
rank is II;

risk count(A4, O6,read,A,B)= Ri(Os(O6),C(A,B),As(read))=0.08, the risk
rank is I;

risk count(A4, O7,read,A,B)= Ri(Os(O7),C(A,B),As(read))=0.04, the risk
rank is I;

risk count(A4, O8,write,A,B)= Ri(Os(O8),C(A,B),As(write))=0.11, the risk
rank is I;

risk count(A4, O9,read,A,B)= Ri(Os(O9),C(A,B),As(read))=0.04, the risk
rank is I;

If the predefined threshold RV is set as 0.2, base the policy of dynamic ad-
justment of the privilege, we will revoke the write permission of the subject A4to
the object O5between domains A and B:

PS(A4) = {< O6, read >,< O7, read >,< O8, write >,< O9, read >}
Through the privilege’s dynamic adjustment, whether the subject can acquire

some privilege lie on the risk rank of the relevant authorization items. The course
which the subjects acquire the privilege is a dynamic and frequent process. We
can decide on that whether the operation is can be executed base the operations
history, the security level of the operation object, and the security extent of the
access operation. Hence, the authorization is dynamic which will be adjusted
with the time and the hierarchy of the subjects and objects.

4.3 The Security Analyses for the MD-R2BAC

Comparing with the traditional security model, the contribution of the MD-
R2BAC is as follows:

1. It is adapted well to the dynamic change in the multi-domain environment.
In the MD-R2BAC, the change of operations and objects can bring the
change of the authorization. Through the risk rank, this model can reflect
the change of the operations and the hierarchy of the access objects. Further
more, these changes in this model will not affect the special authorizations.
Hence, it can be adapted well to the frequently change of the multi-domain
environment.

2. The more security
MD-R2BAC first imports the concept of risk to access control model, and
the ultimately minimal of a subject is up to the conclusion of the access
history. The risky permissions will be revoked in the dynamic adjustment

Dynamic Access Control Research 289

for the authorizations. It will restrict the risky event from the source and
advance the success probability of the inter-operations. Through the dynamic
adjustment, this model supports these two famous security principles:
– The least of privilege. Through the risk control, the privilege with high

risk rank will be revoked in time. When the subject accesses the other
domain’s objects, it only holds on the relative security privilege.

– The separation of duty. Sometimes, there are some sensitive objects can
not be accessed by one subjects at the same time, and two different
subjects also do not hope access one object simultaneity. These above
can be regarded as the high risky events. These events can be identified
by the estimate of the risk rank. And the system can revoke some part
of the privileges to implement this security principle.

5 Conclusion and Future Work

In the multi-domain environment, the randomicity exist in the share of the
information, the validity of the security mechanism, and the demand of the
information exchange between users. For the complexity of the multi-domain
environment and the ceaseless evolvement of the information secure share, the
traditional access control method can not ensure the absolute security for the
exchange of data resource. The traditional security mechanism is always designed
for static network or closed system. As lacking the dynamic description of the
subjects and objects, the traditional security mechanism hardly to adjust the
subjects’ privilege base the security status of the system.

Through introducing the concept of risk, this paper proposes a dynamic access
control model MD-R2BAC for multi-domain environment based the risk of inter-
operations. This model can acquire the risk of the authorization items of the
subject’s privilege base the operations history, the security level of the operation
object, and the security extent of the access operation. And the risky permissions
will be revoked in the dynamic adjustment for the authorizations. The security
analyses for the MD-R2BAC indicate that this model can reduce the risk and
hidden trouble for the information exchange in the multi-domain environment,
and advance the security of the system obviously.

In this paper, we only discuss the risk for a single access operation in the multi-
domain environment.When anattackerwho combinesmultiple low risk operations
into a new operation, how to assess the risk for the new multiple operation is a
problem being worth paying close attention to. It will be our future works.

References

1. Sonntag, M., Hrmanseder, R.: Mobile agent security based on payment. Operating
Systems Review 34(4), 48–55 (2000)

2. Kwok, Y.K., Song, S., Hwang, K.: Selfish grid computing: Game-theoretic mod-
eling and nas performance results cardiff. In: CCGrid-2005. Proceedings of the
International Symposium on Cluster Computing and the Grid, Cardiff, UK, May,
pp. 9–12 (2005)

290 Z. Tang et al.

3. IEEE (ed.): IEEE Security and Privacy. Economics of Information Security, vol. 3.
IEEE Computer Society, Los Alamitos (2005)

4. Grandison, T., Sloman, M.: A Survey of Trust in Internet Applications. IEEE
Communications Surveys 3(4), 2–16 (2000)

5. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An Integrative Model of Organizational
Trust. Academy of Management Review (20), 75–91 (1995)

6. Jarvenpaa, S.L., Leidner, D.E.: Communication and trust in global virtual teams.
Organization Science 10(6), 791–815 (1999)

7. Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role Based Access Control
Models. Computer 29(2) (1996)

8. Moyer, M.J., Covington, M.J., Ahamad, M.: Generalized role-based access con-
trol for securing future applications. In: NISSC 2000. 23rd National Information
Systems Security Conference, Baltimore, Md, USA (October 2000)

9. Zhang, G., Parashar, M.: Context-Aware Dynamic Access Control for Pervasive
Applications. In: Proceedings of the Communication Networks and Distributed
Systems Modeling and Simulation Conference (CNDS 2004), Western MultiCon-
ference (WMC), San Diego, CA, USA (January 2004)

10. Dimmock, N., Belokosztolszki, A., Eyers, D., Bacon, J., Moody, K.: Using Trust
and Risk in Role-Based Access Control Policies. In: Proceedings of Symposium on
Access Control Models and Technologies (2004)

11. Grandison, T., Sloman, M.: A Survey of Trust in Internet Applications. IEEE
Communications Surveys 3(4), 2–16 (2000)

12. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proc.
IEEE Conference on Security and Privacy. AT&T (May 1996)

13. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust manage-
ment framework. In: 2002 IEEE Symposium on Security and Privacy, pp. 114–131.
IEEE, Los Alamitos (2002)

14. Teh-Ming, W., Fidelis, Y.: A policy-driven trust management framework. In:
Nixon, P., Terzis, S. (eds.) iTrust 2003. LNCS, vol. 2692, Springer, Heidelberg
(2003)

15. Dimmock, N., Belokosztolszki, A., Eyers, D., et al.: Using Trust and Risk in Role
based Access Control Policies. In: SACMAT 2004, New York, USA, June 2-4, 2004
(2004)

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 291–302, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Compositional Multiple Policies Operating System
Security Model

Lei Xia, Wei Huang, and Hao Huang

State Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology,

Nanjing University, 22 Hankou Road, Nanjing 210093, China
xiaxlei@gmail.com, whuang.nju@gmail.com, hhuang@nju.edu.cn

Abstract. Multilevel security policies aim at only confidentiality assurance, with
less consideration on integrity assurance and weakness in expressing channel
control policies. Besides, the trusted subjects it introduces to handle the infor-
mation flow “downgrade” have many security flaws. Moreover, increasing di-
versity of the computing environments results in various security requirements.
However, current mainstream security models are aiming at only one or few
requirements of them each. The Multi-Policy Views Security Model is presented,
which is based on the MLS model, combining the domain and role attributes to
the model, to enforce the expression power in channel control policies, make
permission management more fine-grained and enhance the ability of confining
the permission of the trusted subjects. Moreover, MPVSM has integrated the
properties and functions of MLS, Domain-Type and Role Based models into one
unified model. It is able to enforce multi-policy views in operating system in a
flexible way.

Keywords: security model, multiple policy views, integrity assurance, confi-
dentiality assurance, least privilege, separation of duties.

1 Introduction

Multilevel Security Model (MLS) [1] is one of the most widely used security model in
various system. MLS aims at confidentiality assurance of the information, preventing
the unauthorized leakage of the data in high security level. However, it rarely considers
the integrity assurance, which is also a very critical security requirement [2,7,11].

Biba model is a mathematical dual of BLP, intending to protect integrity of infor-
mation. However, they are both based on lattice mechanism, and information policies
based on the lattice are transitive. Therefore, MLS models are weak in expressing
channel control policies [22]. A firewall’s control policy is a typical channel control
policy. As an example in Figure 1.1, Information is allowed to flow from the Outside
component to the Inside component via the Access Control, but is forbidden to do so
directly. Such policies are hardly expressed in the MLS models.

292 L. Xia, W. Huang, and H. Huang

Fig. 1. Information channel control in a firewall

In addition, in MLS models, information is not allowed to flow “downward”, such as
from high confidentiality level to lower, or from lower integrity level to higher.
However, in many situations, information flow “downward” is needed. Such an ex-
ample of information flow from lower integrity level to the higher is the system call
between user process and operating system. Data at a higher integrity level is more
accurate and/or reliable than data at a lower integrity level. And the integrity level of
user’s data is usually lower than the operating system’s data. Therefore, according to
multilevel policies, user’s data is not allowed to flow to the operating system data ob-
jects. However, in actual computer system, though user applications are not permitted
to violate the integrity of operating system data, they should be given appropriate ways
to pass the information or parameters to operating system.

To handle these problems, many MLS systems (such as HP-UX/CMW [8]) intro-
duce some special trusted subjects outside the TCB. These special subjects are given
privileges to bypass the MLS access control mechanisms. For they are not controlled by
the access control mechanisms, they have almost all of privileges, which is far more
than what they need to do they jobs. It is obviously a violation to the Principle of Least
Privileges. These subjects turn to be the potential targets for malicious attacks. Once
they are compromised, they can bring huge damages to the system.

Moreover, various security requirements are coming up with the sharply increased
diversity and complexity of the computing environments. To satisfy these security re-
quirements, a variety of security models were proposed in last twenty years. Widely-used
security policies in current mainstream systems include multi-level military security
model (Bell-LaPadula model, BLP) [1] and its variants (Biba [6], Dion model), Domain
and Type Enforcement (DTE) [9], Role-based access control (RBAC) [14], and etc. Each
of these models aims mainly at one or several security requirements, such as BLP aiming
at the confidentiality of the information, Biba aiming at data integrity assurance, DTE
aiming at confining the information flow channels, etc.

Previous trusted operating system usually enforced only one kind of mandatory
access control model, for instance, Multics[3] implemented only BLP model in it.
However, as mentioned above, the security goals in different applications are various.
The different security requirements of applications result in different security models
needed for them. How operating system to support this kind of multiple security model
views--the access control model different applications can perceive in the system is
different.

Recently, as a policy neutral security model, RBAC provides a valuable level of
permission abstraction. However, using RBAC to simulate multi-level security level or

Inside

Access
Control

Outside InternetIntranet

Firewall

 A Compositional Multiple Policies Operating System Security Model 293

discretionary access control models [12] is over complex and therefore unpractical in
real-world operating system.

In this paper, a Compositional Multiple Policy Security Model (MPVSM) is pre-
sented. MPVSM is a hybrid security model, which is based on Multi-level Security
models. It combines confidentiality and integrity lattices into a unified security lattice
for confidentiality and integrity assurance. It then divides the subjects and objects in the
same security level into different domains and types, using access control mechanisms
in DTE to make the permission assignment and management more fine-grained and
flexible, meantime enforce the separation of duties between subjects in the same se-
curity level. In addition, using the thought of RBAC, role is added in MPVSM. Roles
are assigned the extra permissions, which are independent of MLS and Domain-Type
parts of the model. MPVSM makes use of the flexible permission assignment and
revocation mechanisms in RBAC to confine the permissions of those special “trusted
subjects”, provides a way to make them do they job out of control range of the MLS and
Domain-type access control parts, but meanwhile prevent them from too powerful to be
potential security holes of the system.

MPVSM has integrated the properties and functions of Multiple Level Security,
Domain-Type and Role Based models into one unified model. By combining the ele-
ments and attributes of DTE and RBAC to the MLS model, MPVSM avoids the
drawbacks of MLS. MPVSM is able to enforce channel control and assured pipelines
policies, with providing fine-grained permissions management. In addition, MPVSM
owns an enhanced ability of policy expression. It can ensure the enforcement of least
privilege to these special “trusted subjects” in the MPVSM model. Moreover, MPVSM
provides a framework to enforce multiple policy views in operating system. It can not
only enforce the equivalent functions of these three kinds of models independently in
the system, but also can enforce multi-policy views between different applications in
system.

The remainder of the paper is organized as follows. Section 2 describes the MPVSM
formally. Section 3 gives the example policy configurations in MPVSM. Section 4 is
the related works. And section 5 is the conclusion.

2 Multiple Policy Security Model

2.1 Overview

The architecture of the MPVSM is shown in figure 2. MPVSM comprises of elements,
relations and mappings. A user in the framework is a system user. A role is a job
function or job title within some associated semantics regarding the authority. Subjects
are active entities in the system, usually processes or transactions. Objects are data
objects as well as resource objects. Domain is a control access attribute associated with
each subject. And type is the other control attribute associated with objects. Two global
matrixes are defined to represent allowed access or interaction modes between domains
and types or domains and domains respectively. Permission is an approval of a par-
ticular mode of access to object or interaction to subject. Security label is a 2-tuple,
containing a confidentiality label and an integrity label.

294 L. Xia, W. Huang, and H. Huang

There are several relations and mappings between elements. The relation between
users and roles are defined in user-role assignment relation. The user-subject relation
gives relation between subjects and users, while subject-role mapping figures out a
subject’s current running role. Permissions in system can be authorized to roles. Roles’
authorized permissions are given in the role-permission authorization relation. Each
role in system can have many authorized domains. Role-domain authorization relation
gives the authorized domains of each role. Each subject has only one running domain,
which is given in subject-domain mapping. Besides, each subject has a security label.
The security labels are assigned to roles, and subject’s security label is determined by
the label of its running role. Each object has a security attribute which includes the type
and security label of that object.

Fig. 2. The MPVSM

The final permissions that a subject gets are based on three kinds of permissions
corresponding to that subject: MLS permissions, Domain permissions and Role-based
permissions. MLS Permissions are coarse-grained base permissions, indicating the
subject has the read-related permission or write-related permission. Domain permis-
sions are the fine-grained permissions based on the MLS Permissions. Role-based
permissions is independent from MLS permissions and domain permissions.

Correspond to the three kinds of permissions, MPVSM model contains three access
control views: 1)Multi-level Security Access Control. The MLS permissions given to
the subject are based on the security level of the subject and the target object.
2)Domain Access Control. Subjects run in different domains. A subject’s Domain
permissions are based on its running domain and the target objects’ types.
3)Role-Based Access Control. The subject has the permissions of its running role as its
Role-based permissions.

In addition, MPVSM model is also an extensible security model, by adding other
attributes to the role and object, besides the label and domain or type attributes of
current role and object, more functions or properties can be added.

2.2 Formal Definitions

The following definitions formalize the discussion above:

Definition 2.1. Elements Sets
• Users: U
• Subjects: S

Label Label

Subject perms

Role perms ObjectRole

MLS perms

TypeDomain Domain perms

Subject User

Perms

 A Compositional Multiple Policies Operating System Security Model 295

• Objects: O
• Roles: R
• Domains: D
• Types: T
• Confidentiality Labels: C
• Integrity Labels: I
• Security Labels: SL ⊆ C×I
• Access modes: P, containing of two disjointed subsets: Read-related Modes

RP={read(r), execute(e), getattr(g) ... }; Write-related Modes WP={ write(w), ap-
pend(a), create(c), delete(d), setattr(s) ... }; P=RP∪WP.

• Domain transfer operation: transfer(t)�transfer denotes the subject can transfer
from one domain to another domain.

• Role Permissions CAP ⊆ P×O, (p, o)∈CAP denotes the permission to access o in
mode p.

Definition 2.2. US ⊆ U×S，user-subject relation. More than one subject can run on
behalf of one user at the same time. But each subject can only run on behalf of one user,
called its running user.
• user: S→U, mapping from subject to its running user. user(s) =u if and only if u∈U
∧(u, s)∈US.

Definition 2.3. UA ⊆ U×R, user-role assignment relation. Each user can be assigned
many roles and each role can be assigned to many users.
• UR: U→2R, mapping from user to the set of roles assigned to that user. UR(u) ={r
∈R|(u, r)∈UA}.

• SR: S→R, subject-role mapping, from the subject to its running role. Each subject
has a running user and running role at anytime, and the role must have been assigned
to that user: SR(s)∈ UR(user(s)).

Definition 2.4. role’s security label
• RL: R→SL, mapping from role to its security label.
• Ssl: S→SL, mapping from subject to its security label. Subject’s security label is the

same as its running role’s security label: Ssl (s)=RL(SR(s)).

Definition 2.5. RD ⊆ R×D, role-domain authorization relation. Each role has many
authorized domains and each domain can be authorized to many roles.
• RDom: R→2D, mapping from role to its authorized domains set. RDom(r) ={d∈D|(r,

d)∈RD}.
• SDom: S→D, mapping from subject to its running domain. Each subject is running

in only one domain at anytime, and the domain is authorized to that subject’s run-
ning role: SDom(s)∈RDom (SR(s)).

Definition 2.6. object’s security attribute
• OT: O→T, mapping from object to its type.
• OL: O→SL, mapping from object to its security label.

Definition 2.7. RCAP ⊆ R×CAP, role-permission authorization relation. (r1,cap)∈RCAP
denotes that role r1 has the role permission cap.

296 L. Xia, W. Huang, and H. Huang

• Rolecap: R→2CAP, mapping from role to its authorized Role permissions set. Role-
cap(r)={cap|(r,cap)∈RCAP}.

Definition 2.8. Two control matrixes
• DTM: D×T→2P, domain-type access control matrix. p∈DTM(d, t) denotes that the

subjects in domain d can access objects with type t in mode p.
• DDI: D×D→{Φ,{transfer}}, domain-domain interaction control matrix. transfer∈

DDI(d1, d2) denotes that subjects in domain d1 can transfer into domain d2.

Definition 2.9. Multiply Levels Security rule: MLS_rule: SL×SL→2P, a∈MLS_rule
(ls, lo) implies that subjects with security label ls can access objects with security label
lo in mode a. This rule combines the BLP confidentiality and Biba integrity lattices. Let
ls=(cs, is), lo=(co, io):

• If cs≥co, permit all read-related operations, that is: RP ⊆ MLS_rule(ls, lo).
• If cs＜co, deny all read-related operations, that is: ∀ p∈RP, p∉MLS_rule (ls, lo).
• If is≥io, permit all write-related operations, that is: WP ⊆ MLS_rule(ls, lo).
• If is＜io, deny all write-related operations, that is: ∀ p∈WP, p∉MLS_rule (ls, lo).

2.3 Permission Decision

Definition 2.10
• MLS permission (MLP): a subject’s MLP on an object is determined as follow:

mlp(s, o)={(o, p)|p∈MLS_rule (Ssl(s), OL(o))}
 Domain permission (DP): a subject’s DP on an object is determined as follow: dp(s,

o)={(o, p)|p∈DTM(SDom(s), OT(o))
 Role permission (RP): a subject’s RP on an object is determined as follow: rp(s,

o)={(o, p)|(o, p)∈Rolecap(SR(s))}
A subject’s Final permissions on an object is determined as: fp(s, o)=(mlp(s, o)

∩dp(s, o))∪rp(s, o).

3 Examples of Policy Configuration

3.1 Trusted Subjects’ Permission Confinement

We take the information interaction between user process and operating system as an
example on the information flow from lower integrity level to higher integrity level. As
shown in Figure 3. User data is in lower integrity level, and operating system data in
higher integrity level. In order to satisfy the needs of system calls, User process is
permitted to write to the buffer data space of the operating system, but no permission to
the other data object of the OS. Similarly, operating system writes the data to the buffer
object of the user process.

To enforce the policy described above, each process is assigned a security attribute
{role, domain}, denoting the process’s running role and running domain. And each data
object is assigned a security attribute {(c, i), t}, denoting the object’s confidentiality level
c, integrity level i and type t, as shown in Figure 3. And Rolecap(usr_r)={(w, kerbuffer)},
role usr_r has write permission to the kerbuffer object, its security label is (0,1),

 A Compositional Multiple Policies Operating System Security Model 297

Fig. 3. Information interaction between user process and operating system

Table 1. DTM

 ker_t Kerbuf_t usr_t usrbuf_t

ker_d r,w r w

usr_d r,w r

and its authorized domains set is {usr_d}. Rolecap(ker_r)= Φ, ker_r has no role per-
mission, its security label is (0,2), and its authorized domains set is {ker_d}. The DTM
and DDI between the domains and types are shown in Table 3.1.

We isolate the operating system data and user data from each other by dividing them
into different integrity level. The usrbuffer and usrprivate data objects which are in the
same integrity level are divided into different types, therefore User process can have
different fine-grained permissions to these two objects. According to the MLS policy,
User process has no write permission to the kerbuffer objects for its integrity level is
lower than the object. However, this write permission is necessary for getting job done.
So, we assign write permission on object kerbuffer to the role usr_r, this permission is
independent of MLS and Domain permissions. In this way, the function of system call
is achieved without giving too much permission to the User process to bring potential
security flaws to system.

3.2 Channel Control

We design a simplified firewall system to demonstrate the use of MPVSM in config-
uring channel control policies. The firewall is shown in Figure 4. The security policy of
the firewall is that all information flow from outside network to inside network or in
reverse direction must be checked by the access control component. It can be described
as follow: information is only allowed to flow from the Outside to the Inside or in re-
verse direction via the Access Control. It can not be flowed directly between them.
Besides, all components are permitted to read the Config without modifying it. And all
components can append information to the Log, but can not read it.

Our configurations to enforce this policy are shown in Figure 3.2. The DTM and
DDI between domains and types are shown in Table 3.2. And Rolecap(fw_r) =Φ, role

User process

usrprivate usrbuffer

kerprivate

Kernel process {ker_r, ker_d}

{usr_r, usr_d}

{(0,2),kerbuf_t} {(0,2),ker_t}

{(0,1), usrbuf_t}{(0,1),usr_t

kerbuffer

298 L. Xia, W. Huang, and H. Huang

Fig. 4. Policy configuration of the Firewall

Table 2. The DTM and DDI

 in_t out_t con_t in_d out_d ac_d

in_d r,w r,a

out_d r,w r,a

ac_d r,w r,w r,a

fw_r has no Role permissions. The security label of the fw_r is (1,1), and its authorized
domains are {ac_d, in_d, out_d}, there is no transfer permission between any two of
these three domains.

We upgraded the confidentiality level of the Log to make it unreadable to the
components, upgraded the integrity level of the Config to make it unmodifiable by
components. Then we divided the subjects of the same security level to different do-
mains, and objects of the same security level to different types. By controlling the
fine-grained permissions between the domains to types, information channel control
policy between the inside and outside network is enforced.

3.3 Enforcing Multiple Security Policies

Through different configuring ways, Multi-Level security model, DTE and RBAC can
be enforced separately in the MPVSM, and multi-policy views between different user
groups can be enforced too.

3.3.1 Enforcing Multi-level Security model
The way configuring MPVSM to enforce Multi-Level Security model, which based on
both confidentiality and integrity lattices, is described as following:

Inside Outside

Log

Config

InternetIntranet

Firewall {(3,0),con_t}

{(1,1),out_t}{(1,1),in_t

{(0,3),con_t}

{fw_r, out_d} {fw r, in d}

{f_r, ac_d}

Access
Control

 A Compositional Multiple Policies Operating System Security Model 299

1. |R|=|SL|, number of roles in the system is the same as the number of the security
labels. Each role corresponds to one security label.

2. D={gen_d}, T={gen_t}, there are only one domain and one type in the system.
RD={(r, gen_d)|r∈R}, indicates that all roles’ authorized domain is gen_d. The
type of all objects is gen_t: OT={(o, gen_t)| o∈O}.

3. DTM={(d, t, p)|d∈D, t∈T, p∈P}, which indicates domain gen_d have all domain
permissions to type gen_t.

4. Rolecap(r:R)=Φ, no role permission is authorized to every role.

3.3.2 Enforcing DTE
1. R={gen_r}, only one role in system. UA={(u, gen_r)|u∈U}, role gen_r is assigned

to every users.
2. RD={(gen_r, d)|d∈D}, indicates that all domains in system are authorized to the

role gen_r.
3. SL={(Only_C,Only_I)}, only one security label in the system, therefore: RL= {(r,

Only_C, Only_I))|r∈R}.
4. Rolecap(r:R)= Φ.

3.3.3 Enforcing RBAC
1. D={gen_d}, T={gen_t}, only one domain and one type in system. RD={(r, gen_d)|

r∈R}, gen_d is authorized to every role in system. The type of all objects is gen_t,
OT={(o, gen_t)| o∈O}.

2. DTM(gen_d, gen_t)=Φ, denotes subjects in gen_d domain have no domain permis-
sions to objects in type gen_t.

3. SL={(Only_C, Only_I)}, only one security label. RL={(r,(Only_C,Only_I)) |r∈R}.

3.3.4 Enforcing Multiple Model Views
Assume all users in the system can be divided into three groups: Grpa, Grpb and Grpc.
Now we may hope that users in each group can perceive different access control model
views. For instance, users in Grpa think that the security model enforced in system is
MLS, users in Grpb think that is RBAC and users in Grpc think that is DTE. The con-
figuring method that enforces this multi-model views in one system is given as below.

1. U=Grpa∪Grpb∪Grpc, the three sets are disjointed each other.
2. R= mls_rs∪rbac_rs∪{dte_r}. mts_rs is the roles set corresponding to MLS

model. rbac_rs is the roles set corresponding to RBAC model. And dte_r is the
role corresponding to DTE model.

3. D= {mls_d}∪{rbac_d}∪dte_ds.
4. (u, r)∈UA∧(u, r’)∉UA, where u∈Grpa, r∈mls_rs, r’∉mls_rs, the roles in

mls_rs are only permitted to be assigned to users in Grpa. (u, r)∈UA∧(u,
r’)∉UA, where u∈Grpb, r∈rbac_rs, r’∉rbac_rs, the roles in rbac_rs can only
be assigned to users in Grpb. Similarly, (u, dte_r)∈UA∧(u, r)∉UA, where u∈
Grpc, r≠dte_r, every user in Grpc is assigned the only role dte_r.

5. |mls_rs|=|SL|, number of roles in set mls_rs is the same as the number of security
labels in system. Each role in mls_rs corresponds to one security label.
MLS_rule(Ssl(r), tsl)=M, r∈rbac_rs, tsl∈SL, have all of possible MLS permis-

300 L. Xia, W. Huang, and H. Huang

sions to other subjects or objects. MLS_rule(Ssl(dte_r), tsl)=M, tsl∈SL, role
dte_r’s MLS permissions to other subjects or objects include all of possible per-
missions too.

6. The security label of the roles in rbac_rs is the lowest level label of the system, that
is: ∀ r∈rbac_rs, RL(r)=(cs, is), ∀ c∈C, cs≤c and ∀ i∈I, is≤i. the security label of
dte_r is the highese level label of the system, that is: RL(dte_r)=(cs, is), ∀ c∈C,
cs≥c and ∀ i∈I, is≥i.

7. (r, mls_d)∈RD∧(r,d)∉RD, where r∈mls_rs, d≠mls_d, every roles in mls_rs is
authorized the only domain mls_d. (dte_r, d) ∈RD∧(r’, d)∉RD, where r’≠dte_r,
d∈dte_ds, all domains in dte_ds are authorized to role dte_r. Simliarly, (r,rbac_d)
∈RD∧(r,d)∉RD, where r∈rbac_rs, d≠rbac_d, every role in rbac_rs is au-
thorized the only domain rbac_d.

8. (mls_d,t,p)∈DTM,t∈T, p∈P. DDI(mls_d, d)=Φ, d∈D, subjects in domain mls_d
can not transfer to other domains.

9. (rbac_d, t, p)∈DTM, t∈T, p∈P, the subjects in domain rbac_d have all domain
permission to all types’ objects in system. DDI(rbac_d, d)=Φ, d∈D, subjects in
domain rbac_d can not transfer to other domains.

10. For every r∈mls_rs∪{dte_r} and c∈CAP, (r, c)∉RCAP, there is no role per-
mission authorized to roles in set mls_rs and the role dte_r.

4 The Related Works

Bell-LaPadula [1] (BLP) model mainly emphasizes the protection of confidentiality. It
is able to limit flow of information and unauthorized information leakage. However, it
does not care about the integrity, which is also important [2,7,11]. Besides, BLP is
weak in channel control of information flow [22]. Biba Integrity Model [6] is the
mathematical dual of BLP, intending to protect the integrity in system.

Type enforcement is a table-oriented mandatory access control policy for confining
applications and restricting information flows. DTE [9] is an enhanced version of type
enforcement designed to provide needed simplicity and compatibility. Role-based ac-
cess control [14] provides a valuable level of abstraction to promote security admini-
stration at a business level.

The Flask [10] security architecture emphasizes diverse security policies support.
However, it applies only MAC to the Fluke Microkernel. It provides the mechanisms
for diverse policies without giving how to enforce multiple policies in system.

One of the earliest MAC mechanisms in operating system is Lattices [1, 20]. For
instance, LOMAC [13] enforces Biba integrity. CMW [8] can dynamically relabel the
current object for increased flexibility.

Recently, Asbestos [17] provides labeling and isolation mechanisms that can sup-
port applications to express a wide range of policies and make MAC more practical.
KernelSec [18] aims at improving the effectiveness of the authorization model and the
security policies that can be implemented.

In capability-based confinement systems, KeyKOS [21] achieved military-grade
security by isolating processed into compartments and interposing reference monitors
to control the use of capabilities. EROS [19] later successful realized this principles on

 A Compositional Multiple Policies Operating System Security Model 301

the modern hardware. And the Coyotes kernel [5] mainly explores use of software
verification techniques to achieve higher confidence in the correctness and security of
the kernel.

Mandatory access control can also be achieved with unmodified traditional operat-
ing system through virtual machines [16, 4].

5 Conclusions

The Compositional Multiple Policy Security Model is presented, which is based on the
MLS model, combining the domain and type attributes to the model, to eliminate the
limitations of MLS models. It has enforced expression power in channel control poli-
cies, and made permission management more fine-grained and enhanced the ability of
confining the permission of the trusted subjects. MPVSM is also able to enforce mul-
tiple policy views in operating system in a flexible way.

References

1. Bell, D., La Padula, L.: Secure Computer Systems: Mathematical Foundations. Technical
Report MTR-2547, vol. I, MITRE Corporation (1975)

2. Amoroso, E., Nguyen, T., Weiss, J., et al.: Towards an Approach to Measuring Software
Trust. In: 1991 IEEE Symposium on Research in Security and Privacy, pp. 198–218 (1991)

3. Organick, E.: The MULTICS System: An Examination of Its Structure. MIT Press, Cam-
bridge (1972)

4. Karger, P.A., Zurko, M.E., Bonin, D.W., et al.: A VMM security kernel for the VAX ar-
chitecture. In: 1990 IEEE Symposium on Security and Privacy, pp. 2–19 (1990)

5. Shapiro, J., Doerrie, M.S., Northup, E., et al.: Towards a Verified, General-Purpose Oper-
ating System Kernel. In: 1st NICTA Workshop on Operating System Verification (2004)

6. Biba, K.: Integrity Considerations for Secure Computer Systems. Technical Report
MTR-3153, MITRE Corporation (1977)

7. Eswaran, K., Chamberlin, D.: Functional Specifications of Subsystem for Database Integ-
rity. In: The International Conference on Very Large Data Bases (1975)

8. Berger, J.L., Picciotto, J., Woodward, J.P.L., Cummings, P.T.: Compartmented mode
workstation: Prototype highlights. IEEE Transactions on Software Engineering, Special
Section on Security and Privacy 16, 608–618 (1990)

9. Badger, L., Sterne, D.F., Sherman, D.L., et al.: A Domain and Type Enforcement UNIX
Prototype. In: 5th USENIX UNIX Security Symposium (1995)

10. Spencer, R., Smalley, S., Hibler, M., et al.: The Flask Security Architecture: System Sup-
port for Diverse Security Policies. In: 8th USENIX Security Symposium, pp. 123–139
(1999)

11. Lipner, S.: Non-Discretionary Controls for Commercial Applications. In: 1982 Symposium
on Privacy and Security (1982)

12. Osborn, S., Sandhu, R., Munawer, Q.: Configuring Role-based Access Control to Enforce
Mandatory and Discretionary Access Control Policies. ACM Transactions on Information
and System Security 3, 85–106 (2000)

13. Fraser, T.: LOMAC–low water-mark mandatory access control for Linux. In: 9th USENIX
Security Symposium (1999)

302 L. Xia, W. Huang, and H. Huang

14. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-Based Access Control. IEEE
Computer 29 (1996)

15. Loscocco, P., Smalley, S.: Meeting critical security objectives with security-enhanced
linux. In: Ottawa Linux Symposium 2001 (2001)

16. Goldberg, R.P.: Architecture of virtual machines. In: AFIPS National Computer Confer-
ence, vol. 42, pp. 309–318 (1973)

17. Efstathopoulos, P., Krohn, M., VanDeBogart, S., et al.: Labels and Event Processes in the
Asbestos Operating System. In: 20th Symposium on Operating Systems Principles (2005)

18. Radhakrishnan, M., Solworth, J.A.: Application Support in the Operating System Kernel.
In: ACM Symposium on Information, Computer and Communications Security (2006)

19. Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: A Fast Capability System. In: 17th ACM
symposium on Operating systems principles (1999)

20. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer system. Pro-
ceedings of the IEEE 63, 1278–1308 (1975)

21. Key Logic. The KeyKOS/KeySAFE System Design (1989), http://www.agorics.com/
Library/KeyKos/ keysafe/Keysafe.html

22. Rushby, J.: Noninterference, Transitivity, and Channel-Control Security Policies. Technical
Report CSL-92-02, Computer Science Lab, SRI International (1992)

Longer Randomly Blinded RSA Keys May Be

Weaker Than Shorter Ones

Colin D. Walter

Comodo Research Laboratory
7 Campus Road, Bradford, BD7 1HR, UK

Colin.Walter@comodo.com

Abstract. Side channel leakage from smart cards has been of concern
since their inception and counter-measures are routinely employed. So a
number of standard and reasonable assumptions are made here regarding
an implementation of RSA in a cryptographic token which may be sub-
jected to non-invasive side-channel cryptanalysis. These include blinding
the re-usable secret key, input whitening, and using an exponentiation
algorithm whose operation sequence partially obscures the key.

The working hypothesis is that there is limited side channel leakage
which only distinguishes very imprecisely between squarings and multi-
plications. For this typical situation, a method is described for recovering
the private exponent, and, realistically, it does not require an excessive
number of traces. It just requires the modulus to be public and the public
exponent not to be too large.

The attack is computationally feasible unless parameters are appro-
priately adjusted. It reveals that longer keys are much more vulnerable
than shorter ones unless blinding is proportional to key length. A further
key conclusion is that designers must assume that the information theo-
retic level of leakage from smart cards can be transformed into usable key
information by adversaries whatever counter-measures are put in place.

Keywords: Side channel leakage, power analysis, SPA, DPA, RSA.

1 Introduction

Side channel leakage of secret key information from cryptographic devices has
been known publicly for a number of years [1], and very widely since the work
of Kocher [6,7]. In the case of RSA, the main software counter-measures to this
have included message whitening, key blinding and more complex exponentiation
algorithms. These, therefore, form the main assumptions here.

In the past, there were no obvious ways of extracting weak leaked information
from this and using it to recover the secret key. Either the leaked information
had to distinguish clearly between squarings and multiplications for individual
uses of the key [3] or, with less precise leakage, the same key had to be re-used
many times in an unblinded state so that the leakage could be averaged to reduce
noise [6,2,13].

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 303–316, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

304 C.D. Walter

However, from the information-theoretic standpoint, it is clear that there can
be enough data for the key to be recovered when blinding is used but side chan-
nel leakage is imprecise. Here a means for obtaining the key is given for that
situation, developed from the case of perfect, but partial, side channel inform-
ation described by Fouque et al. [3]. One of the main contributions here is a
metric for evaluating choices and enabling the best to be investigated first.

The first objective is to determine the blinding factor for several dozen cases.
This is done by brute force: testing every possible value until one is found which
would provide a trace that matches the measured trace sufficiently well under
a suitable metric. The analysis is complicated by an unknown factor k equal to
the size of the public exponent E. That factor must also be determined from the
side channel leakage in the same way, and therefore affects the computational
feasibility of the method if E is large. However, there is no obvious way to avoid
the exhaustive search.

Once the blinding factors are determined for as many traces as are needed,
the second objective is to determine the unblinded private exponent. Its bits are
guessed from most to least significant by looking at both possible values and
selecting the one which matches the observed leakage better. Incorrect choices
are quickly noticed, and corrected by back-tracking and lookahead. This phase
of the attack is less computationally intensive than the first, but it requires
more traces when the leakage is weaker – a number inversely proportional to the
strength of leakage.

The adversary makes use of certain properties of the exponentiation algorithm
which lead to the leakage. The standard 4-ary sliding windows [4] considered here
has a pattern of squarings and multiplications which contains information about
the bit pattern of the exponent. The method applies equally well to any other
algorithm with a variable pattern of operations where the variation is derived
from a local property of the secret key, such as bit values.

Finally, the complexity of the attack is considered. There is low space com-
plexity and the attack is highly, and easily, parallelisable to make full use of
computing resources. The total time complexity is of order which is the product
of the public key, the maximum blinding factor and a measure of the unreliabil-
ity of the side-channel leakage. Thus, it appears to be computationally feasible
to extract the key in many normal circumstances.

A significant conclusion is that, for a fixed amount of blinding, longer keys are
less secure because blinding factors are determined more accurately. This means
that blinding should be increased in proportion to key length in order to thwart
the attack.

The organisation of the paper is as follows. The main assumptions, the leakage
model, pre-requisite notation and background algorithms are covered in sections
§2 to §5. Phase 1 of the attack, during which the blinding factors are recovered,
is treated in §6. Phase 2 of the attack, namely the recovery of the secret key,
is described in §7. The computational cost is reviewed in §8 and wide-ranging
conclusions are drawn in §9.

Longer Randomly Blinded RSA Keys May Be Weaker Than Shorter Ones 305

2 Notation

The n-bit RSA modulus N and public exponent E are assumed to be known by
the attacker. His aim is to recover the private key D which is re-used a number
of times but only in the blinded form Di = D+riφ(N) where ri < R is a small
random number (typically up to 32 bits) and φ(N) is unknown.

The modulus is a product of two primes N = PQ which must be of similar
magnitude. For convenience, we assume P and Q have the same number of bits.
Then, without loss of generality, P < Q < 2P so that 2

√
N < P+Q < 3

√

N/2
and φ(N) = N−(P+Q)+1 is bounded by

N − 3
√

N/2 + 1 < φ(N) < N − 2
√
N + 1 (1)

This interval has length less than 1
8

√
N , so that more than half of the most

significant bits of φ(N) are known by the attacker from those of N .
The exponents D and E are related by

D×E = 1+kφ(N) (2)

for some k. Without loss of generality, letD be the smallest non-negative solution
to this congruence, so that D < φ(N) and k < E. When key D is re-used many
times, blinding factors are normally added to produce the randomly different
exponents which are actually used for decryption or signing [6]:

Di = D+riφ(N) (3)

where ri is a random number, usually of 16 to 32 bits. Thus,

Di =
1 + (k+riE)φ(N)

E
(4)

Let R be an upper bound on such ri. Then the coefficient k+riE of φ(N) is,
in effect, a random number in the range 1 to RE. (So it is irrelevant whether k
and D were chosen minimally in equation (2)). In equation (4) the adversary is
initially only interested in the most significant half of the bits. He ignores the 1
and approximates φ(N)/E by computing N/E. By the earlier remarks this gives
him at least the top n/2 bits of φ(N)/E. So,

Di ≈ (k+riE)N/E (5)

The attacker now has to generate each of the RE possible values of the random
coefficient of N/E in order to obtain a set containing an approximation to the
value of Di used in the exponentiation which he has observed.

3 The Exponentiation

For convenience we assume that the exponentiation algorithm is 4-ary sliding
windows using the re-coding in Fig. 1 [4,5]. This uses a window of 1 bit width

306 C.D. Walter

Input: Binary D = (bn−1...b2b1b0)2
Output: Recoding D = (dm−1...d2d1d0)

i ← 0 ;

m ← 0 ;

While i < n do

If bi = 0 then

Begin

dm ← 0 ;

i ← i+1 ;

m ← m+1 ;

End

else

Begin

dm ← 2bi+1 + 1 ;

i ← i+2 ;

m ← m+1 ;

End

Fig. 1. Quaternary Sliding Windows Recoding

when there is a digit zero in the recoded exponent, and otherwise a window
of 2 bits width, for which the digit is 1 or 3. Although this does not provide
the same protection against side channel cryptanalysis as the square-and-always
multiply algorithm, it is more time efficient even than the usual square-and-
multiply algorithm and also creates some difficulty for an attacker who may
have to distinguish whether the multiplications pertain to digit 1 or digit 3.

This algorithm, or its fixed-width equivalent, is typical of a smart card because
of its speed and low storage overhead: only the first and third powers of the input
message need storing for the exponentiation. Both algorithms generate a pattern
of squarings and multiplications which is related to occurrences of the zero digit.
This is the property that can be exploited here by an attacker.

4 The Leakage Model

With expected counter-measures in place it is unrealistic to assume that every
long integer multiplicative operation in an RSA exponentiation can be identi-
fied and distinguished as a squaring or not. However, some imperfect deductions
may be possible from a side channel trace, particularly in contactless cards where
severe resource limitations and an explicit aerial limit the scope and effective-
ness of any counter-measures. The following two leakage scenarios are likely in
practice. Others are certainly possible.

First, because the conditional subtraction in a Montgomery modular multi-
plication ([8], see Fig. 2) consumes a number of extra clock cycles, there is a
possibility that it may be observed in a side channel trace via the longer time
for the operation. The slightly different frequencies of the subtraction for squares
and multiplies mean that each occurrence or absence of the subtraction makes

Longer Randomly Blinded RSA Keys May Be Weaker Than Shorter Ones 307

Input: A and B such that 0 ≤ A, B < N < rn and N prime to r.
Output: C = ABr−n mod N

C ← 0 ;

For i ← 0 to n-1 do

Begin

qi ← -(c0+aib0)n0
−1 mod r ;

C ← (C+aiB+qiN) div r ;

End ;

{ Assertion: Crn ≡ A×B mod N and ABr−n ≤ C < N+ABr−n}
If C ≥ N then C ← C-N ;

Fig. 2. Montgomery’s Modular Multiplication Algorithm (MMM)

a square or multiplication marginally more likely [13]. As previous attacks have
been unable to use this information in the presence of exponent blinding and
message whitening, implementors may not perceive the leakage as a threat when
such counter-measures are in place. One can therefore expect many of them to
prefer more widely applicable code which includes the conditional subtraction,
despite the existence of straightforward and efficient alternatives [12].

Secondly, the data loading cycles for multiplications and squarings are differ-
ent and therefore vulnerable. For example, the Hamming weight of the words of
the arguments may leak when they pass along the internal bus [7]. A squaring
is almost certain where the Hamming weights are equal, and a multiplication
must be the case if they are different. However, this information is usually well
submerged in noise, and in a well designed implementation it should only yield
a minimal bias towards a squaring or a multiplication.

The above are very much more realistic leakage models than that of [3] where
it was assumed that each multiplicative operation was known to be a squaring
or a multiplication. In practice, only weak probabilistic information is known.

In order to obtain specific measures of implementation strength, the attack
here is modelled on the level of data leakage from observing every conditional
subtraction in Montgomery modular multiplication. However, the attack is
generic, and applies to both of the above scenarios as well as many others.

5 Selecting the Leakiest Traces

The word-based algorithm for Montgomery multiplication (MMM) is given in
Fig. 2 where the digits ai, bi etc. are for the base r representation of the long
integers A, B etc. From the assertion after the loop it is easy to establish the
frequency of the conditional subtraction under the reasonable assumption of
the output residues being uniformly distributed modulo N . The probability is
proportional to the fraction of the interval which is greater than N , namely
ABr−nN−1. For a typical multiplication with independent arguments, this can
be summed with respect to A and B over the interval [0, N) to obtain the average
probability of

308 C.D. Walter

pM ≈ 1
4
Nr−n (6)

Similarly, setting A = B and summing gives the probability of the subtraction
for a squaring, namely

pS ≈ 1
3
Nr−n (7)

The difference between pM and pS shows that the occurrences of a condi-
tional subtraction indicate a squaring is slightly more likely to be the case than a
multiplication. The difference, however, is small. Early attacks on Montgomery’s
algorithm relied on being able to perform hundreds or thousands of exponenti-
ations with the same key in order to observe enough subtractions to conclude
with high probability whether the operation was a squaring or a multiplication.

The formulae (6) and (7) also indicate that decreasing N or increasing the
number of iterations n will reduce the occurrences of the conditional subtraction
and so make the algorithm more secure.

However, the multiplications in individual exponentiations are not as random
as used for the formula (6). For 4-ary sliding windows, one of the two pre-
computed powers of the input message is used as one of the arguments, the
other being a random output from an earlier Montgomery multiplication. So
only one argument is uniformly distributed in a given exponentiation. Let A
be the fixed input to such a multiplication. Then, summing ABr−nN−1 with
respect to B yields the true probability of a subtraction, viz.

pA ≈ 1
2
Ar−n (8)

Thus, when the pre-computed powers of the input are small (resp. large) there
will be very few (resp. many) conditional subtractions resulting from multipli-
cations. This increases the probability of distinguishing between squarings and
multiplications. Overall, this will be noticed by an adversary because the total
number of conditional subtractions will be less (resp. greater) than the average
for such exponentiations. This provides the opportunity for the adversary to
select the leakiest traces with very little computational effort.

Similarly, in the Hamming weight leakage scenario, instead of an enhanced or
reduced frequency of conditional subtractions from large or small values of A,
the adversary homes in on the argument pairs A,B which are the highest Ham-
ming distance apart. They have the highest probability of being multiplications.
This occurs most frequently when the re-used, pre-computed multiplier A has
the highest number of extreme Hamming weights. So, by screening for extreme
Hamming weights, traces which leak significantly more information than average
can be identified easily by the adversary.

In both leakage models, the attacker can therefore begin by selecting side
channel traces which yield the greatest amount of information, and these can
be chosen without excessive computational effort for the initial phase of data
capture, signal processing and selection.

Longer Randomly Blinded RSA Keys May Be Weaker Than Shorter Ones 309

6 The Attack: Phase 1

In the leakage scenarios of §4, the attacker is expected to obtain little or no
useful information about a multiplicative operation in many cases, and only a
very weak probability in favour of a squaring rather than a multiplication (or
vice versa) in other cases. However, as described in §5, he begins his attack by
collecting as many traces as possible and selecting those for which the leakage
promises to be greatest. Phase one of his attack then progresses as follows.

Suppose he has selected a promising trace corresponding to the use of the
blinded exponent Di. He first determines the top half of the digits of φ(N)/E as
in §2 and then guesses the values of k and ri. Equation (5) gives him a possible
approximation Di

′ for Di. He then compares the side channel leakage expected
from Di

′ with that obtained from Di and discards the guessed pair (k, ri) if the
match is poor. Repeating this for all pairs leaves him with a set Si of the most
likely blinding values for Di. This process is repeated with more traces – enough
for him to complete the second phase successfully.

The decision about whether guesses are good enough is based on a metric
μ(tr(Di), ops(Di

′,m)). The first parameter tr(Di) is the processed side chan-
nel leakage from use of the unknown blinded key Di. Specifically, it is a list
of probabilities pr(op) that the operations op of the exponentiation using Di

were squares rather than multiplications. Thus tr(Di) = [pr(ops), pr(ops−1), ...,
pr(op3), pr(op2), pr(op1)] where s = len(tr(Di)) is the total number of opera-
tions in the exponentiation with key Di. In the second parameter, Di

′ is the bit
sequence for the guessed value of Di, and ops(Di

′,m) is the sequence of multi-
plicative operations carried out in an exponentiation with key �Di

′/2m�. So the
m least significant bits of Di

′ are irrelevant, and need not have been guessed yet.
This parameter will be a list containing, say, ‘0’ to denote a squaring, and ‘1’ a
multiplication. In this phase we will set m = n/2+ log2R.

If the side channel leakage tr = tr(Di) for Di indicates with probability trj
that the jth operation was a squaring and the jth operation in ops(Di

′,m) is
also a squaring then trj−1

2 is added to the metric. However, if a multiplication
occurs as the jth element in ops(Di

′,m), then 1
2−trj is added. So 0 is added if

the leakage provides no information since then trj = 1
2 , but there is a positive

contribution to the sum when the operation in tr(Di) is more likely to be the
same as that in ops(Di

′,m), and there is a negative contribution when the two
operations are more likely to be different. Thus, the sum for calculating the
metric is

μ(tr, ops(D′,m)) =
∑

1≤j≤nops(�D′/2m�)
(−1)ops(D′,m)j (trj − 1

2
) (9)

when ops(D′,m)j ∈ {0, 1} as suggested above, and nops(D′′) is the number of
operations in exponentiating to the power D′′. Here the lists tr and ops(D′,m)
are in temporal execution order assuming an exponentiation algorithm which
processes bits from most to least significant. This correctly aligns corresponding
elements of the lists when the lowest bits of D′ are ignored.

310 C.D. Walter

If the guess (k, ri) is correct, the value Di
′ provides the same pattern of squar-

ings and multiplications as Di over the first (approximately) half of the oper-
ations of the exponentiation. So, unless the noise is overwhelming, this should
maximise the value for the sum when restricted to those operations. Therefore
larger values for μ imply a better match between the guessed value Di

′ and
the targetted exponent Di, whereas smaller and negative values indicate a poor
match. Because of the unknown difference between N and φ(N), the n/2+ log2R
least significant bits of Di

′ are unreliable even when (k, ri) is guessed correctly.
By taking m = n/2+ log2R the operations corresponding to them are ignored.

The metric could be improved by taking account of the dependence between
consecutive operations: for example, the probable occurrence of a multiplication
implies that the next operation is more likely to be a squaring. Schindler [9,11,10]
treats this in detail and provides theory about the best choice of metric.

6.1 Phase 1 Simulation

In our simulation, values were chosen which correspond to a leaky implemen-
tation of MMM where every conditional subtraction is observed and N ≈ rn.
Conditional subtractions were generated randomly with frequencies in accor-
dance with the model described in §5. There was no selection of “better” traces
on the grounds of fewer or more subtractions than normal. Since conditional
subtractions occur with slightly greater frequency for squarings than for multi-
plications, the metric was (arbitrarily) incremented by pj−1

2 = 0.1 for every
conditional subtraction in the trace when there was a squaring in the guessed
value and therefore incremented by 1

2−pj = −0.1 (i.e. decremented) for every
conditional subtraction that coincided with a multiplication.

Table 1. Proportion of Guesses returning a Higher Value of μ than the Correct One

log2 RE 8 12 16 32 48

n = 384 7.9×10−3 8.0×10−3 8.2×10−3 5.0×10−3 3.6×10−3

512 2.7×10−3 2.4×10−3 3.4×10−3 2.0×10−3 1.0×10−3

768 5.3×10−4 3.2×10−4 1.0×10−3 1.4×10−4 1.2×10−4

1024 2.0×10−5 1.9×10−5 8.7×10−4 1.7×10−5 8.0×10−6

1536 < 2.5×10−7 < 2.5×10−7 < 2.5×10−7

With only this weak knowledge to distinguish between squarings and multipli-
cations, the “best” guess is rarely the correct one. The correct values are ranked
among the best, but do not usually come top. Therefore, to assess the feasibility
of the attack, it is necessary to know the size of the set S of best guesses which is
big enough to include the correct guess. This depends on the strength of the leak-
age. With the parameters just described, the results in Table 1 were obtained.
It gives a good indication of how well the matching process works and shows
the minimum proportion of all guesses which must be considered if the correct
one is not to be excluded. For example, with a modulus of n = 1024 bits, and

Longer Randomly Blinded RSA Keys May Be Weaker Than Shorter Ones 311

RE = 232, the leakage of interest is from the top 512 or so bits. Then the met-
ric μ places the correct values (k, ri) above all but about RE×1.7×10−5 ≈ 216

incorrect values, on average.
In information theoretic terms, the metric has extracted about 16 bits from

the side channel, i.e. about 1 bit in every 512/16 = 32. This is the case for all
the entries in the table: they all correspond to about 1 bit per 32 in the top half
of the key, i.e. n/64 bits in total. An improved metric is possible (e.g. taking into
account multiplications having to be next to squarings) and this would enable
more information bits to be obtained. However, for 2048-bit keys (not tabulated),
this means about 32 bits’ worth of information is recovered, so that k and ri
should be determined almost uniquely when RE ≤ 232. This is indeed what was
found in the simulation. Clearly, longer keys are more vulnerable:

– For a given size of blinding and public exponent, the longer the key, the more
likely (k, ri) is to be guessed correctly and uniquely.

The figures in the table show little effect from increasing RE. k and ri blind
information equivalent to about log2RE bits’ worth of operations. However,
longer blinding factors also seem to constrain the pattern of the blinded key
more tightly. With these conflicting forces, the average success of the method is
little changed: the number of bits leaked depends almost entirely on the length n
of the key. Consequently, for a given key length, the same proportion of choices
(k, ri) are removed irrespective of the value of RE. Of course, the number of
accepted pairs must still increase directly in proportion to RE. Thus,

– Typical leakage from 2048-bit or longer keys will usually reveal (k, ri) cor-
rectly with current standards for key blinding and a small public exponent;

and

– In these cases, an exhaustive search is computationally feasible to find the
correct blinding factors (k, ri).

Incidentally, a powerful counter-measure in the case of Montgomery condi-
tional subtractions is just to halve the modulus. This halves the number of
conditional subtractions, and so halves the number of bits which are leaked.

6.2 Combining Traces to Determine k in Phase 1

The leakage from t traces can be processed for an outlay of t times the effort for
one. If these traces are independent, t times as much bit information is extracted.
Thus, a very small number of traces should result in k being determined with
some confidence, since the same k is used in all cases. In fact, the correct value
of k should have been guessed for all or almost all traces, and, if there is any
bias, the correct value for k should be one of the most popular among the best
guesses for an individual trace.

Guesses at k are ranked as follows. For each sufficiently good guess k+riE,
the value of k = (k+riE) mod E is extracted and the associated value of the

312 C.D. Walter

metric μ is added to the weighting of k. The higher the total weight for a guess
at k, the more likely that value is to be correct. The possible values of k are then
considered in descending order of weight in Phase 2, the heaviest first.

Our simulation did not investigate how much this ranking reduces the search
space in Phase 2 as a function of t; from the information theoretic point of view,
it seems possible that k is almost completely determined by only a very small
number of traces. This is an important detail that still needs to be researched
as it affects the effectiveness of the blinding.

7 The Attack: Phase 2

Let Si be the set of plausible guesses at (k, ri) for the ith trace, and suppose Si

is partitioned into subsets Sik which share the same k. Armed with these sets,
the adversary progresses to phase 2, which is the recovery of the remaining, least
significant bits of φ(N). He repeats this phase for each k separately, choosing the
most likely k first. φ(N) is constructed bit by bit from the most significant end.
The first half of φ(N) was obtained already from the public N and equation (1).

Let φ(N)j = (φn−1φn−2...φj)2 be the part of φ(N) already determined, so
φj−1 is the next bit to be guessed. Let Φj = (φj−1φj−2...φj−w)2 be a guess
at the next w bits of φ(N). For each possible value of word Φj , the right side
of equation (4) is evaluated with φ(N)j−w in place of φ(N). This yields an
approximation Dri,j−w to Di in which only the most significant n−j+w bits are
of interest. The same metric as in Phase 1 is used again to measure how well
this matches the leakage from Di, namely μ(tr(Di), ops(Dri,j−w, j−w+ log2R)).
(As before, at the point before division by E, we ignore the lowest log2RE bits
containing a contribution from φj−w because they are too contaminated by the
carries up from less significant bits of φ(N).) For the given k, the sum

μw(k, j, Φj) =
∑

i

∑

ri∈Sik

μ(tr(Di), ops(Dri,j−w, j−w+ log2R)) (10)

over all guesses is used to assess the worth of the choice for Φj . The leading bit
of Φj from the maximum μw(k, j, Φj) is selected as the value for φj−1.

Correct bit choices amplify any peak (i.e. maximum) values of the metric
μw whilst incorrect choices decrease it. Moreover, previous mistakes reduce any
peaks. When that happens, it is necessary to backtrack and select the most
promising previous value. The difference between the two cases is determined
using a threshold value for the metric which is obtained by experience. When
it becomes too low for every value of Φj , it is necessary to backtrack and select
the most promising previously untried value. The least significant bits of Φj are
partly masked by carries up, and contribute less to the peak values than the
more significant bits. So only the top one or two bits of the best Φj are chosen
each time. In this way the bits φj are chosen from most to least significant. Once
most bits have been guessed, the final log2E bits are fully determined by the
division being exact in equation (4).

Longer Randomly Blinded RSA Keys May Be Weaker Than Shorter Ones 313

Table 2. Probability of predicting the correct bit of φ(N) from t correct guesses ri

with w lookahead bits when n = 1024 and log2 RE = 16

w 1 2 3 4 6 8

t = 25 0.613 0.767 0.833 0.868 0.914 0.930
t = 50 0.642 0.819 0.896 0.939 0.973 0.989
t = 100 0.673 0.846 0.922 0.954 0.981 0.994
t = 250 0.706 0.863 0.930 0.971 0.991 0.995

7.1 Phase 2 Simulation

For the simulation it was assumed that the correct (k, ri) had been chosen for
each i, i.e. that k had been deduced correctly and for the ith trace only the
correct ri had been selected. So |Sik| = 1 and |Sik′ | = 0 if k′ �= k. From the
conclusions about Phase 1, this should usually be the case for long keys.

As long as there is a reasonable probability of detecting the correct bit each
time, all of φ(N) can be determined. Typical probabilities can be seen in Table
2. There seems little to be gained from having more than 100 traces; more
is achieved by having more lookahead bits. In fact, the probability of picking
the wrong bit seems to fall exponentially as the number w of lookahead bits
increases1. From Table 3, w ≥ 8 allows a significant proportion of keys to be
recovered if the k and the randoms ri have been guessed correctly. The figures are
for an implementation of the algorithm without backtracking. When incorrect
bits are predicted, the process does not recover and random bits are generated
thereafter. With most bits being correct, backtracking is a cheaper alternative to
solve this than increasing the number of lookahead bits. Assuming that Table 2
probabilities are constant over the length of the key and are independent of the
key length, it is possible to compute the probability of successfully recovering
the key: approximately pn/2 where p is the table entry and n the key length.

Table 3 gives these probabilities as obtained from a simulation with 100 traces
and w = 8. This corresponds to p = 0.9973. With 10 lookahead digits the
simulation shows there is a 60% chance of recovering 2048-bit keys, and this
corresponds to p = 0.999512. Lastly, with 50 traces but w varying dynamically
between 8 and 16 as necessary, 2048-bit keys were recovered in 11% of cases.
Since the values of k and ri from Phase 1 will be mostly correct for 2048-bit
keys with log2RE ≤ 32,

– It is computationally feasible to recover a substantial number of 2048-bit keys
using 50 traces, current standards for random blinding, typical small public
exponents, and expected levels of weak side channel leakage.

1 The maximum values of μw(k, j, Φj) were computed where Φj ranged over i) values
with φj = 0 and ii) values with φj = 1. The difference between these was a good
indicator of the reliability of the choice of φj . Increasing w just for the cases for
which this difference was smallest led to a remarkable improvement in accuracy.
Moreover, decreasing w for other cases led to a considerable computational saving.
Many 2048-bit keys were recovered successfully using just 50 traces and varying w
between 8 and 16.

314 C.D. Walter

Table 3. Probability of success in determining φ(N) from t = 100, correct ris and key
length n with w = 8 lookahead bits, no back-tracking and log2 RE = 16

n 512 768 1024 1536 2048

prob 0.50 0.40 0.29 0.13 0.04

7.2 The Case of Some Incorrect Phase 1 Deductions

Now consider the case where not all pairs (k, ri) are correct. If (k, ri) is incorrect
then the above process applied only to this pair (i.e. t = 1 and |Sik| = 1) would
result in choosing the lower bits of φ(N) to satisfy (4) with the incorrect values
(k, ri) and the correctDi. This makes the lower bits incorrect by a multiplication
factor of (k′+r′iE)/(k+riE) where (k′, r′i) is the correct pair. Moreover, for these
bit choices the metric retains the peak values associated with a correct choice.
So, without the context of other traces, the error will remain undetected and
the pair (k, ri) cannot be removed from consideration.

Thus, if the above process is performed with a set of pairs (k, ri), some of
which are correct and others incorrect, then the incorrect values predict random
bits, while the correct ones predict the correct bits. This averages to a weaker
prediction of the correct bits. However, the incorrect choices become more ap-
parent as more correct bits are appended to φ(N). Eventually this is noticed
and those choices can be dropped to speed up the process. It is easy to choose
threshold values for the metric – several standard deviations below the average,
say – to guide this decision.

So the Phase 2 process is applied to all the outputs of Phase 1 for a given
k, i.e. every (k, ri) ∈ Sik for every trace, and the sum of all the metric values
is used to choose the lower bits of φ(N). Clearly, however, the limiting factor
in this phase is the ratio of correct to incorrect predictions (k, ri). If this is too
small it will not be possible to identify correct bits through peaks in the value
of the metric. Table 1 shows that key length is a very strong contributor to this:
longer keys improve the ratio, making recovery of φ(N) much easier.

7.3 Comparison with Fouque

In this algorithm the bits of φ(N) are determined in the reverse order from that
used by Fouque et al. [3]. This has several advantages. It makes the transition
between the known upper half of φ(N) and unknown lower half seamless, it
allows the metric easily to include the value of all previous decisions, and it
allows the division by E to be done straightforwardly. The problems of carry
influence in the multiplications of equation (4) is similar for both directions.

8 Complexity

The first phase has time complexity O(REt log(RE)) where t is the number of
traces needed to complete the second phase, and depends on the level of leakage.

Longer Randomly Blinded RSA Keys May Be Weaker Than Shorter Ones 315

This complexity results from an exhaustive search over all possible (k, ri). It
was remarked that there was an information leakage which is proportional to
the length of the traces. Therefore, recovering the log2(RE) bits of each (k, ri)
only requires processing a part of the traces with length O(log(RE)), not the
whole length. Space is not an issue in this phase as only one pair (k, ri) need be
considered at any one time. The pairs are treated independently and so the work
can be completely parallelised. For standard choices of E = 216+1, R = 232 and
a similar level of leakage to the example, this is clearly computationally feasible.

In the second phase the worst situation is that all RE guesses are considered
for every trace at each bit selection, making a total time complexity O(REnt),
which is at worst similar to the first phase. However, if only R′E′ guesses survive
then the complexity is reduced to O(R′E′nt). This assumes that metrics do not
have to be recomputed over the whole length of the trace every time another
bit is guessed; instead the incremental effect of the new bit is used to update
the preceding value. This approach requires O(R′t) space as different values of
k are processed sequentially. The second phase requires strong leakage or a high
ratio of correct pairs (k, ri) to have a chance of working. Therefore practical
limitations on the number of traces that can be obtained guarantees that space
will not be the overriding problem. Furthermore, the work can be parallelised
without difficulty at least as far as distributing the effort for each k to different
processors. This would reduce the time complexity by a factor of O(E).

9 Conclusion

The scope of the attack of Fouque et al. [3] has been extended to include imprecise
leakage by introducing a practical metric which prioritises the selection of guesses
at the random blinding factors and bits of φ(N) for an RSA modulus N . Both
attacks target the typical set-up for RSA decryption/signing in a smartcard with
standard counter-measures which include exponent blinding.

It was found that very weak, imprecise leaked data could be successfully ma-
nipulated to reduce the ambiguity in the blinding factors by a factor essentially
proportional to the length of the keys, so that the blinding factors are fully de-
termined when the key is long enough. For typical choices of public exponent
and blinding parameters, and a leakage rate equivalent to only 1 bit per 32 bits
of key per trace, the blinding factors can be recovered correctly for keys above
about 2048 bits in length.

Reconstruction of the unknown lower bits of φ(N) requires most of the blind-
ing factors to be recovered correctly and sufficiently many traces to be available.
With a leakage rate of 1 bit per r key bits, 1.5r traces suffice to recover φ(N)
and hence factor N without any need for an expensive search. In a simulation,
a sizeable proportion of 2048-bit keys were successfully recovered using leakage
from only 50 traces (r=32). Thus the attack is certainly computationally feasible
with only weak, imprecise leakage.

So longer keys were found to be more vulnerable. The best counter-measure
is to ensure that blinding increases with key length at least until it becomes

316 C.D. Walter

computationally infeasible to test every blinding value individually. The attack
illustrates that the information theoretic level of leakage can be into converted
successfully into the secret key even in the presence of a typical collection of
standard counter-measures.

References

1. Portable Data Carrier including a Microprocessor, Patent 4211919, US Patent and
Trademark Office (July 8, 1980)

2. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P., Quisquater, J.-J., Willems, J.-
L.: A practical implementation of the Timing Attack. In: Schneier, B., Quisquater,
J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 175–190. Springer, Heidelberg
(2000)

3. Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, F., Valette, F.: Power At-
tack on Small RSA Public Exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 339–353. Springer, Heidelberg (2006)

4. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algo-
rithms, vol. 2. Addison-Wesley, Reading (1997)

5. Koç, Ç.K.: High Radix and Bit Recoding Techniques for Modular Exponentiation.
International J. of Computer Mathematics 40(3-4), 139–156 (1991)

6. Kocher, P.: Timing attack on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

7. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

8. Montgomery, P.L.: Modular Multiplication without Trial Division. Mathematics of
Computation 44(170), 519–521 (1985)

9. Schindler, W.: A Combined Timing and Power Attack. In: Naccache, D., Paillier,
P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 263–279. Springer, Heidelberg (2002)

10. Schindler, W.: On the Optimization of Side-Channel Attacks by Advanced Stochas-
tic Methods. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 85–103.
Springer, Heidelberg (2005)

11. Schindler, W., Walter, C.D.: More detail for a Combined Timing and Power At-
tack against Implementations of RSA. In: Paterson, K.G. (ed.) Cryptography and
Coding. LNCS, vol. 2898, pp. 245–263. Springer, Heidelberg (2003)

12. Walter, C.D.: Precise Bounds for Montgomery Modular Multiplication and Some
Potentially Insecure RSA Moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS,
vol. 2271, pp. 30–39. Springer, Heidelberg (2002)

13. Walter, C.D., Thompson, S.: Distinguishing Exponent Digits by Observing Mod-
ular Subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
192–207. Springer, Heidelberg (2001)

Differential Power Analysis of HMAC Based on

SHA-2, and Countermeasures

Robert McEvoy, Michael Tunstall, Colin C. Murphy, and William P. Marnane

Department of Electrical & Electronic Engineering, University College Cork, Ireland
{robertmce,miket,cmurphy,liam}@eleceng.ucc.ie

Abstract. The HMAC algorithm is widely used to provide authenti-
cation and message integrity to digital communications. However, if the
HMAC algorithm is implemented in embedded hardware, it is vulnerable
to side-channel attacks. In this paper, we describe a DPA attack strategy
for the HMAC algorithm, based on the SHA-2 hash function family. Us-
ing an implementation on a commercial FPGA board, we show that such
attacks are practical in reality. In addition, we present a masked imple-
mentation of the algorithm, which is designed to counteract first-order
DPA attacks.

1 Introduction

In today’s modern society of e-mail, internet banking, online shopping and other
sensitive digital communications, cryptography has become a vital tool for en-
suring the privacy of data transfers. To this end, Message Authentication Code
(MAC) algorithms are used to verify the identity of the sender and receiver, and
to ensure the integrity of the transmitted message. These algorithms process the
message to be authenticated along with a secret key, which is shared between the
sender and receiver. The result is a short string of bits, called a MAC. HMAC [1]
is a popular type of MAC algorithm which is used in the IPsec [14] and TLS
protocols [6], and is based on a cryptographic hash function such as SHA-2 [16].

The last decade has also seen the emergence of attacks which target cryp-
tographic algorithms that are implemented in embedded hardware [9]. Of par-
ticular interest are differential side-channel attacks, such as Differential Power
Analysis (DPA) [12]. These non-invasive attacks exploit information that leaks
from a cryptographic device via some side channel, such as timing information,
power consumption, or electromagnetic emanations. Comparing small variations
in the side-channel information as a device processes different messages can po-
tentially allow an attacker to recover secret information stored within the device.
In this paper, we examine the susceptibility to differential side-channel attacks
of the HMAC algorithm based on the SHA-2 family of hash functions.

Side-channel attacks on hash functions and the HMAC algorithm have been
discussed in the past, but specific attack details for the SHA-2 family have not
been given, nor have countermeasures been designed. In 2001, Steinwandt et
al. [21] presented a theoretical attack on the SFLASH signature scheme, which

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 317–332, 2007.
© Springer-Verlag Berlin Heidelberg 2007

318 R. McEvoy et al.

targeted an exclusive-OR (XOR) operation in SHA-1. Coron and Tchoulkine [5]
noted the vulnerability of the HMAC algorithm to a DPA attack. Lemke et
al. [10] described a theoretical DPA attack on the HMAC algorithm based on the
hash function RIPEMD-160, noting that a similar approach could be taken for a
HMAC scheme based on SHA-1. Okeya et al. [18,19] highlight the susceptibility
of MAC and HMAC algorithms to side-channel attacks, but the exposition is for
the HMAC algorithm based on block-cipher based hash functions, in contrast
with SHA-2, which is a dedicated cryptographic hash function.

In this paper, we characterise a differential side-channel attack on an imple-
mentation of the HMAC algorithm that uses the SHA-2 hash function family.
Furthermore, we provide attack results on a FPGA implementation of the al-
gorithm. We also describe countermeasures that could be used to prevent such
side-channel attacks, by designing masked circuits for the vulnerable SHA-2 op-
erations. The rest of this paper is organised as follows. In Section 2, the necessary
background theory regarding the HMAC algorithm, the SHA-2 family, and DPA
attacks is introduced. Section 3 gives a detailed account of how the SHA-256
based HMAC scheme can be broken by a side-channel attacker. Results from a
practical FPGA-based implementation of this attack are presented in Section 4.
In Section 5, a masking scheme is designed as a countermeasure against the
attack, and the resulting FPGA-based scheme is tested in Section 6. Section 7
concludes the paper.

2 Background Theory

2.1 HMAC Algorithm Overview

The HMAC authentication scheme was first introduced by Bellare et al. at
CRYPTO’96 [1]. The scheme was designed such that the security of the MAC is
built upon the security of the underlying hash function h. The MAC is calculated
as follows:

HMACk(m) = h((k ⊕ opad)||h((k ⊕ ipad)||m)) (1)

where k is the secret key (padded with zeros to equal the block size of h), and
m is the message to be authenticated. ipad is a fixed string whose length equals
the block size of h; generated by repeating the hexadecimal byte 0x36. Similarly,
opad is fixed and is formed by repeating the hexadecimal byte 0x5C. ⊕ and ||
denote XOR and concatenation respectively.

Clearly, in order to calculate HMACk(m), the hash function h must be in-
voked twice. In this paper, we focus on the first call to the hash function, which
calculates the partial MAC:

HMAC′k(m) = h((k ⊕ ipad)||m) (2)

In [1], the authors suggested using MD5 or SHA-1 to instantiate the hash func-
tion h. In 2002, the HMAC algorithm was released as a standard by NIST [17],
in which h is defined as a NIST-approved hash function. In this paper, we ad-
here to this standard and choose SHA-256 to instantiate h. This follows a recent

Differential Power Analysis of HMAC 319

trend in the cryptographic community away from older hash functions, for which
weaknesses have been identified [11], and towards newer constructions like the
SHA-2 family [16]. We use the term “HMAC-SHA-256” to denote the HMAC
algorithm that uses SHA-256 to instantiate h.

2.2 SHA-256 Description

There are four hash functions in the SHA-2 family: SHA-224, SHA-256, SHA-
384 and SHA-512. Each algorithm generates a fixed-length hash value; SHA-224
produces a 224-bit output, SHA-256 has a 256-bit output, etc. The compression
functions in SHA-224 and SHA-256 are based on 32-bit operations, whereas the
compression functions for SHA-384 and SHA-512 are based on 64-bit operations.
We focus on SHA-256 in our attacks, because it is easier in practice to perform a
side-channel attack on a 32-bit word than on a 64-bit word. However, in theory,
the side-channel attacks and countermeasures described in this paper should also
be applicable to HMAC-SHA-384 and HMAC-SHA-512.

The SHA-256 algorithm essentially consists of three stages: (i) message padding
and parsing; (ii) expansion; and (iii) compression.

Message Padding and Parsing. The binary message to be processed is ap-
pended with a ‘1’ and padded with zeros until its bit length ≡ 448 mod 512.
The original message length is then appended as a 64-bit binary number. The
resultant padded message is parsed into N 512-bit blocks, denoted M (i), for
1 ≤ i ≤ N . These M (i) message blocks are passed individually to the message
expansion stage.

Message Expansion. The functions in the SHA-256 algorithm operate on
32-bit words, so each 512-bit M (i) block from the padding stage is viewed as
sixteen 32-bit blocks denoted M

(i)
t , 1 ≤ t ≤ 16. The message expansion stage

(also called the message scheduling stage) takes each M (i) and expands it into
sixty-four 32-bit Wt blocks for 1 ≤ t ≤ 64, according to equations given in [16].

Message Compression. The Wt words from the message expansion stage
are then passed to the SHA compression function, or the ‘SHA core’. The core
utilises eight 32-bit working variables labelled A, B, . . . , H , which are initialised
to predefined values H(0)

0 –H(0)
7 (given in [16]) at the start of each call to the hash

function. Sixty-four iterations of the compression function are then performed,
given by:

A = T 1 � T 2 (3)
B = A (4)
C = B (5)
D = C (6)

E = D � T 1 (7)
F = E (8)
G = F (9)
H = G (10)

where

T 1 = H �
∑

1
(E) � Ch(E,F,G) �Kt �Wt (11)

320 R. McEvoy et al.

T 2 =
∑

0
(A) �Maj(A,B,C) (12)

Ch(x, y, z) = (x ∧ y)⊕ (x̄ ∧ z) (13)
Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) (14)

∑

0
(x) = ROT2(x) ⊕ROT13(x)⊕ROT22(x) (15)

∑

1
(x) = ROT6(x) ⊕ROT11(x)⊕ROT25(x) (16)

and the inputs denoted Kt are 64 32-bit constants, specified in [16]. All additions
in the SHA-256 algorithm are computed modulo 232, denoted by �. The logical
AND operator is denoted by ∧, and x̄ denotes the logical NOT operator. After
64 iterations of the compression function, a 256-bit intermediate hash valueH(i),
comprising H(i)

0 –H(i)
7 , is calculated:

H
(i)
0 = A�H

(i−1)
0 , H

(i)
1 = B �H

(i−1)
1 , . . . , H

(i)
7 = H �H

(i−1)
7 (17)

The SHA-256 compression algorithm then repeats and begins processing an-
other 512-bit block from the message padder. After all N data blocks have been
processed, the output, H(N), is formed by concatenating the final hash values:

H(N) = H
(N)
0 || H(N)

1 || H(N)
2 || . . . || H(N)

7 (18)

2.3 Differential Side-Channel Analysis

Some of the most common forms of side-channel analysis are Differential Power
Analysis (DPA) [9] and related attacks such as Correlation Power Analysis
(CPA) [2]. In this type of attack, a series of power consumption traces are ac-
quired using an oscilloscope, where each trace has a known associated input
(e.g. the message block being processed). A comprehensive guide to this class of
attacks is provided in [12].

The fundamental principle behind all DPA attacks is that at some point in
an algorithm’s execution, a function f exists that combines a fixed secret value
with a variable which an attacker knows. An attacker can form hypotheses about
the fixed secret value, and compute the corresponding output values of f by
using an appropriate leakage model, such as the Hamming Distance model [2].
The attacker can then use the acquired power consumption traces to verify
her hypotheses, by partitioning the acquisitions or using Pearson’s correlation
coefficient. These side-channel analysis attacks are aided by knowledge of details
of the implementation under attack. Moreover, these attacks can be used to
validate hypotheses about implementation details. In subsequent sections, these
side-channel analysis attacks are referred to as DPA attacks.

3 Attacking HMAC-SHA-256

In this section, we describe an attack on HMAC-SHA-256 using DPA. This attack
does not allow recovery of the secret key itself, but rather a secret intermediate

Differential Power Analysis of HMAC 321

state of the SHA-256 hash function. Knowledge of this intermediate state would
allow an attacker to forge MACs for arbitrary messages. We note that the attack
is not limited to DPA, and other side-channels, such as the electromagnetic side-
channel, could also be used.

3.1 Goal of the Attack

We assume that the attacker has access to a device that performs the HMAC
algorithm, and that she has knowledge of the messages being processed by the
device. This target device contains a basic implementation of the SHA-256 algo-
rithm, and does not include any side-channel analysis countermeasures. Further-
more, we assume that the attacker has access to some side-channel information
(e.g. the power consumption) while the device is calculating the MAC, which
leaks the Hamming Distance between the internal signals as they change from
one state to the next. As is common, we assume that the secret key is stored in
a secure environment, which does not leak side-channel information.

The attack focuses on the first execution of SHA-256, given in equation (2).
The block size of SHA-256 is 512 bits; therefore, using the notation from Sec-
tion 2.2, |k| = |ipad| = 512. Without loss of generality, we can assume that the
size of the message m is such that N = 2, i.e. the device will run through the 64
iterations of the compression function twice, in order to calculate equation (2).

When i = 1, the hash function is operating on (k ⊕ ipad), which clearly does
not change from one execution of the HMAC algorithm to the next. Hence,
the intermediate hash H(1) is also fixed and unknown. Recall that in order to
perform a differential side-channel attack, we require fixed unknown data to
be combined with variable known data. This criterion is fulfilled during the
calculation of H(2), when the variable m is introduced and combined with the
previous intermediate hash H(1). Therefore, in theory, a differential side-channel
attack could be launched on a device calculating equation (2), in order to recover
H(1). This knowledge would allow the attacker to create partial MACs of her
choice. Reapplying the side-channel attack on the second invocation of SHA-
256 in the HMAC algorithm would allow the attacker to forge full MACs for
messages of her choosing. Consequently, the goal of the attacker is to recover the
secret intermediate hash value H(1).

3.2 Attack Strategy

The secret intermediate hashH(1) manifests itself as the initial values of the eight
32-bit working variables A–H , when i = 2. We use the subscript t, 1 ≤ t ≤ 64 to
denote the round number, e.g. A1 refers to the value of A at the start of round 1
of the compression function, etc. The side-channel attacker’s goal is to uncover
the eight variables A1–H1. A strategy for such an attack is now described.

1. With reference to equations (3) and (7), it is clear that at some point in the
first round, the variable T 11 must be calculated. T 1t is a large sum with 5
terms, and can be re-written as:

T 1t = θt �Wt (19)

322 R. McEvoy et al.

where
θt = Ht �

∑

1
(Et) � Ch(Et, Ft, Gt) �Kt (20)

In round 1, θ1 is fixed and unknown, and W1 is known by the attacker,
since it is related to m. Therefore, a DPA attack can be launched by making
hypotheses about θ1, and computing the corresponding values of T 11. Since
SHA-256 uses 32-bit words, 232 hypotheses for θ1 are required. Furthermore,
since we assume that the target device leaks the Hamming Distance (HD),
the 232 possibilities for the previous state, T 10, must also be taken into
account. Therefore, the attacker correlates the power traces with her 264

hypotheses for HD(T 10, T 11). This allows the attacker to recover T 10 and
θ1, and then calculate T 11 for any message m.

Clearly, correlating with 264 hypotheses would be computationally infea-
sible, even for well-resourced attackers. In Section 3.3, we describe how the
Partial CPA technique [22] can be used to significantly reduce the attack’s
complexity.

2. The above attack stage gives the attacker control over the value of T 11, so
it is now a known variable. Using equation (7), the attacker can now make
hypotheses on the (fixed) bits of D1, using the bits of E2 as selection bits.
Using the Hamming Distance model, hypotheses for the previous (secret)
state E1 are also generated. In this way, the attacker can recover her first
secrets, D1 and E1, and accurately predict the value of E2 for any message
m.

3. Focusing on equation (3), we observe that T 11 is variable and known, whereas
T 21 is fixed and unknown. The attacker can launch a DPA attack on A2 by
forming hypotheses about T 21 and the previous state A1. Hence, the secret
value of A1 is revealed. Furthermore, with knowledge of both T 11 and T 21,
the attacker can now accurately predict A2 for any message m.

Therefore, by analysing the side-channel signals from the first round, the
attacker can recover the fixed secret values of θ1, D1, E1, T 21 and A1, and
also predict the values of variables T 11, A2 and E2.

4. The attacker now turns her attention to the second SHA-256 round. Here,
the Ch function is calculated as:

Ch(E2, F2, G2) = (E2 ∧ F2)⊕ (E2 ∧ G2) (21)

where E2 is variable, and known by the attacker. From equations (8) and (9),
we observe that F2 and G2 are fixed at E1 and F1, respectively. Therefore,
the attacker can generate hypotheses about the unknown values F1, and
attack the output of the Ch function. Of course, 232 hypotheses for the
previous state Ch(E1, F1, G1) are also required. Recovering F1 means that
the attacker can now accurately predict the variable Ch(E2, F2, G2).

5. The next point of attack is the calculation of T 12 (equation (11)). At this
stage, the only fixed unknown value in the equation is H2, as every other
variable can be predicted. The attacker already knows the previous state
T 11 from stage 1 above. Mounting a DPA attack uncovers H2, and allows

Differential Power Analysis of HMAC 323

T 12 to be predicted. From equation (10), it can be seen that H2 is equivalent
to G1.

6. The knowledge of T 12 gained from the previous attack stage can be applied
to equation (7). Using the bits of E3 as the selection function, the attacker
can mount a DPA attack that uncovers D2. From equation (6), we observe
that D2 is equivalent to C1.

7. The Maj function in the second round can be expressed as:

Maj(A2, B2, C2) = (A2 ∧ B2)⊕ (A2 ∧ C2)⊕ (B2 ∧ C2) (22)

where A2 is variable, and known by the attacker. From equations (4) and
(5), we observe that B2 and C2 are fixed at A1 and B1, respectively. Using
a similar approach to that taken in stage 4 above, the attacker can perform
DPA on Maj and discover the secret value of B1.

8. By following the above strategy, the attacker can recover the fixed secrets
A1–G1. The last remaining secret variable, H1, can be found by reverting
the focus to round 1, and substituting into equation (11), where the only un-
known value is that of H1. The eight 32-bit secret values are thus recovered,
using seven first-order DPA attacks.

3.3 Complexity of the Attack

As noted above, it is currently computationally infeasible for an attacker to
compute 264 hypotheses for a DPA attack. However, as indicated in [2] and
illustrated in [22], a partial correlation may be computed, rather than the full
correlation. If a correlation coefficient of ρ is obtained by correctly predicting
all 32 bits of an intermediate variable, then we would expect to obtain a partial
correlation of ρ

√

l/32 by predicting l bits correctly. Hypotheses can be made
on smaller sets of bits at a time, e.g. l = 8, and this strategy can be employed
to keep only those hypotheses that produce the highest partial correlations. In
this way, the full 32-bit correlation can be built up in stages, thereby reducing
the complexity of the attack. This is similar to the ‘extend-and-prune’ strategy
employed by a template attack [3].

4 Attack on FPGA Implementation

4.1 Implementation Details

In order to demonstrate the feasibility of a DPA attack on HMAC-SHA-256,
we implemented the algorithm on a Xilinx FPGA Board. FPGAs are attractive
for implementing cryptographic algorithms because of their low cost (relative to
ASICs), and their flexibility when adopting security protocol upgrades. FPGAs
also allow rapid prototyping of various designs. For our experiments, we im-
plemented SHA-256 on Xilinx’s low-cost Spartan™-3E Development Kit, which
contains the Spartan™XC3S500E FPGA [23]. FPGAs consist mostly of Config-
urable Logic Blocks (CLBs), arranged in a regular array across the chip. In our

324 R. McEvoy et al.

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time

C
or

re
la

tio
n

8 bits
12 bits
16 bits
20 bits
24 bits
28 bits
32 bits

Fig. 1. Correlation and partial correlations between the power consumption and E2,
given the correct prediction of D1 and the previous state E1

case, each CLB contains 4 logic “slices”, which is the basic unit used to quantify
the area occupied by a design. Each slice contains two four-input Look-Up Ta-
bles (LUTs) and two registers. Logic also exists within a slice which allows fast
implementation of carry look-ahead addition. Each slice has a dedicated mul-
tiplexer, which is hard-wired to provide a fast carry chain between consecutive
slices and CLBs. Indeed, fast carry logic is a feature of many modern FPGAs.
We will make use of this dedicated addition circuitry in Section 5.

Several optimisations for the SHA-2 family exist, such as pipelining and loop
unrolling [4]. However, for simplicity, it was decided to implement a basic design
without such optimisations. The design was captured using VHDL, and synthe-
sis, placing and routing were performed using Xilinx ISE™v9.1i. The processor
and interface circuitry utilise 951 slices, corresponding to 20% of the FPGA re-
sources. The critical path in the design (i.e. the longest combinational path) is
16.4 ns, during the calculation of A (equation (3)). Block RAMs (BRAMs) on
the FPGA are used to store the various messages to be processed; this reduces
the communication requirements with the FPGA board.

4.2 Experimental Results

In order to obtain DPA power traces from the design, the FPGA board was
configured with the basic SHA-256 design, and a 10 Ω resistor was inserted in the
FPGA power supply line. Using a LeCroy WaveRunner 104Xi oscilloscope and a
differential probe, we could measure the voltage fluctuations across the resistor
as the SHA-256 algorithm was being executed. Therefore, the traces recorded on
the oscilloscope were proportional to the power consumption of the FPGA during
the execution of the algorithm. Traces for the first three rounds were captured
while 4000 random messages were being processed by the FPGA. In order to
reduce acquisition noise, each captured trace corresponded to the average of
700 executions with the same message. Figure 1 shows the correlation trace
achieved when D1 and the unknown previous state E1 are correctly predicted.

Differential Power Analysis of HMAC 325

The different levels correspond to the correlation coefficients achieved when a
certain number of bits are correctly predicted.

5 Masking the SHA-256 Algorithm

The preceding sections have demonstrated the susceptibility of hardware im-
plementations of the HMAC algorithm to first-order DPA attacks. We now ex-
amine how to use masking as a countermeasure to such attacks. The masking
technique aims to use random values to conceal intermediate variables in the
implementation of the algorithm, thereby making the side-channel leakage inde-
pendent of the secret intermediate variables. Much of the literature has focused
on masking techniques for software implementations of cryptographic algorithms
(e.g. [5,8,15]). In [7], Golić detailed techniques for masking hardware implemen-
tations, which we build upon below in order to mask HMAC-SHA-256.

5.1 Requirements

Consider a function f and intermediate variables x, y and z, such that z =
f(x, y). If x or y are key-dependent or data-dependent, then masking is required.
We introduce random masks rx, ry and rz such that x′ = x ◦ rx, y′ = y ◦ ry
and z′ = z � rz ; where ◦ is the group operation masking the input data, and
� is the group operation masking the output z. In order to prevent differential
side-channel attacks, the function f must be modified to the function f ′, such
that z′ = f ′(x′, y′, rx, ry, rz) = z�rz. If the group operation is XOR, the masking
scheme is termed Boolean masking. The SHA-256 algorithm also uses addition
modulo 232, which requires arithmetic masking.

In [7], Golić described the goal of designing a secure masked hardware im-
plementation for a function f , using the “secure computation condition”. This
condition states that the output value of each logic gate in the design should be
statistically independent of the original data (i.e. the secret key and the input
data). In the case of a Boolean logic circuit implementing f , this condition is
satisfied if all of the inputs to the circuit are jointly statistically independent of
the original data. In the case of a multiplexer-based design for f : (i) the data
inputs to the multiplexer should be identically distributed; (ii) each data input
should be statistically independent of the original data; and (iii) for each fixed
value of the original data, each data input should be statistically independent of
the control input. In order to mask our SHA-256 design correctly, care must be
taken that these conditions are met.

5.2 Masking the Original Data

In Section 3, the eight variables A–H in the SHA-256 algorithm were identified
as the secret values which are of interest to the side-channel attacker. Therefore,
we begin the first iteration of the compression function by XOR-ing these values
with eight 32-bit random masks denoted rA–rH , so that they become A′–H ′.
Furthermore, the variable input data Wt to the SHA-256 compression algorithm

326 R. McEvoy et al.

Table 1. Linear and non-linear functions (with respect to XOR) used in SHA-256

Linear Non-Linear

NOT (x̄) Ch
σ0 Maj
σ1 AND
∑

0
,

∑

1
addition modulo 232

requires masking. Since this data is perfectly predictable by the attacker, it must
be XOR-ed with a new 32-bit random value rW in every SHA-256 round.

Recall that the fixed secret data mixes with the attacker’s variable known
data within the SHA-256 compression algorithm. Therefore, we must also mask
the individual functions in the SHA-256 compression algorithm. If a function f
is linear with respect to the mask, then it is easy to mask, as z′ = f(x′, y′), and
rz = f(rx, ry). Conversely, non-linear functions require modification in order to
achieve secure masking. Therefore, new circuits implementing these non-linear
functions must be designed, with respect to the secure computation condition
given above. Table 1 outlines the linear and non-linear functions used by SHA-
256. In the following sub-sections, we present our designs for the secure circuits
implementing the non-linear functions of Table 1 on an FPGA.

5.3 The Ch and Maj Functions

The logical functions Ch and Maj are described by equations (13) and (14)
respectively. The non-linearity in both of these functions stems from the AND
operations. Therefore, Ch and Maj cannot be implemented using ordinary AND
gates, and masked AND gates must be used instead.

In [7], Golić proposed masking the AND function z = x ∧ y, using Boolean
masking, as follows:

z′ = ∧′(x′, y′, rx, ry)
= y′ ∧ (ry ∧ rx ∨ ry ∧ x′) ∨ y′ ∧ (ry ∧ rx ∨ ry ∧ x′) (23)

where ∨ denotes logical OR. This approach has the advantage that the output
mask rz is equal to the input mask rx; therefore, a new mask for z is not required.

When implementing this masked AND circuit (denoted ∧′) on an FPGA, we
can take advantage of the underlying slice structure. Equation (23) is a four-
input function, which is perfectly suited for implementation in one of the FPGA
slice’s four-input LUTs. A two-input or three-input XOR operation can also be
implemented using a single four-input LUT. Note that care must also be taken
when describing masked circuits, so that the HDL synthesis tool does not remove
the redundancy in the design, or combine two variables that are not statistically
independent.1

1 In VHDL, this can be achieved by asserting the “keep hierarchy” attribute within
the masked AND gate’s architecture.

Differential Power Analysis of HMAC 327

Our design for masked Maj(A,B,C), denoted Maj′(A′, B′, C′, rA, rB, rC), is
as follows:

Maj′(A′, B′, C′, rA, rB, rC) = (∧′(A′, B′, rA, rB))⊕ (∧′(A′, C′, rA, rC))
⊕(∧′(B′, C′, rB, rC)) (24)

Therefore, three LUTs (per bit) are required for the three masked AND oper-
ations, and one LUT (per bit) is required for the three-input XOR. Since the
variables are 32-bit,Maj′ requires 128 LUTs or 64 Spartan-3E slices. This is four
times larger than a basic unmasked implementation of Maj. By choosing the
order for the operands of the masked AND functions appropriately, the output
mask becomes rMaj = rA ⊕ rA ⊕ rB = rB .

Similarly, our design for masked Ch(E,F,G) is

Ch′(E′, F ′, G′, rE , rF , rG) = (∧′(E′, F ′, rE , rF))⊕ (∧′(G′, E′, rG, rE)) (25)

which requires two LUTs (per bit) for the two masked AND operations, and one
LUT (per bit) for the 2-input XOR. Care must be taken regarding the order
of the operands of the masked AND functions. If E′ was the first operand of
both masked AND gates, then the output mask would be rCh = rE ⊕ rE = 0,
i.e. the output would be unmasked. Therefore, we choose the order such that
rCh = rE ⊕ rG, which requires one extra LUT (per bit) to compute the XOR.
Hence, a total of 128 LUTs or 64 Spartan-3E slices are required, which is four
times the size of a Ch implementation not protected by Boolean masking.

5.4 Addition Modulo 232

All of the masks that have been introduced up to this point have been Boolean
masks. However, the SHA-256 compression algorithm makes extensive use of
consecutive additions modulo 232, denoted �, which are arithmetic functions
and are non-linear with respect to Boolean masking. This presents the designer
with a choice: (i) a new masked function �′ can be created, which uses Boolean
masking; or (ii) a Boolean-to-Arithmetic conversion can be applied prior to the
� operations. The latter choice converts a variable masked with a Boolean mask
to a variable masked with an arithmetic mask, meaning that subsequent ad-
ditions are linear with respect to the arithmetic mask. Arithmetic-to-Boolean
conversion is required before the results of the additions are fed back to the
Boolean part of the function. In [7], Golić investigated this design choice, and
concluded that choice (i) above is effective only if a small number of consecutive
masked additions (e.g. one to three) is required. This is verified by our experi-
ments on the FPGA (not detailed here). The masked adder produced in design
(i) has large area and large latency, which greatly adds to the critical path in
the circuit. On the other hand, design (ii) uses the conversion functions along
with ordinary addition operations, both of which can take advantage of the un-
derlying structure of the FPGA, leading to a much shorter critical path than in
design (i). Our designs for the conversion functions are detailed below.

328 R. McEvoy et al.

5.5 Boolean-to-Arithmetic Conversion

The circuits implementing the Boolean-to-Arithmetic and Arithmetic-to-Boolean
conversion functions must themselves be secure against side-channel attacks. Sev-
eral software-based algorithms have been proposed for performing these conver-
sions [5,8,15]; however, these solutions are not suitable for efficient hardware im-
plementation. Golić [7] developed hardware solutions based on the basic method
of ripple-carry addition. Here, we present solutions tailored for FPGA implemen-
tation, based on the carry look-ahead addition method. We take advantage of the
dedicated carry logic that is hard-wired into the FPGA, which allows carry bits
to quickly propagate through columns of FPGA slices.

Henceforth, we will use single prime notation (x′) to denote Boolean masking,
and double prime notation (x′′) to denote arithmetic masking (with respect to
�). The goal is to securely convert a variable x′ = x ⊕ rx into a variable x′′

such that x′′ = x � rx, without compromising the secret value x. Following the
analysis in [7], we use a subscript j, 0 ≤ j ≤ 31 to index the individual bits of
x′, x′′ and rx. The addition, with carry word c, can be expressed as:

x′′j = xj ⊕ rx,j ⊕ cj−1 (26)
= x′j ⊕ cj−1 (27)

where c−1 = 0, and c31 is not used. The carry bits are described by the recursive
equation cj = (xj ∧ rx,j)∨ cj−1 ∧ (xj ⊕ rx,j). In order to suit a carry look-ahead
implementation, the equation for the carry bits can be restated as:

cj = ((x′j ⊕ rx,j) ∧ rx,j) ∨ (cj−1 ∧ (x′j ⊕ rx,j ⊕ rx,j))

= x′j ∧ rx,j ∨ x′j ∧ cj−1 (28)

Clearly, equation (28) is suitable for implementation by a multiplexer in the
FPGA’s dedicated carry chain, with rx,j and cj−1 as data inputs, and x′j as the
control input. Therefore, the Boolean-to-Arithmetic conversion circuit should
have similar area requirements and similar latency to an ordinary adder.

However, the above multiplexer-based design contravenes the secure compu-
tation condition, because the data input rx,j is not statistically independent of
the control input x′j . In theory, this dependence could be used by an attacker to
launch a side-channel attack. In order to remove this dependence, we introduce
a further Boolean masking bit q to mask the carry chain. The same bit q can
be re-used for each multiplexer in the conversion circuit. The resulting scheme
is described as follows:

cj ⊕ q = x′j ∧ (rx,j ⊕ q) ∨ x′j ∧ (cj−1 ⊕ q) (29)

x′′j = x′j ⊕ (cj−1 ⊕ q)⊕ q (30)

The carry look-ahead structure is maintained, which allows fast calculation of
equation (29) on the FPGA. One extra LUT per bit is required by equation (30),
to remove the mask from the masked carry bits.

Differential Power Analysis of HMAC 329

5.6 Arithmetic-to-Boolean Conversion

The aim of an Arithmetic-to-Boolean conversion is to use x′′ and rx to derive
the Boolean-masked variable x′. From equation (27), we have x′j = x′′j ⊕ cj−1.
In order to obtain a recursive expression for cj in terms of x′′, we substitute x′j
into equation (28), giving cj = (x′′j ⊕ cj−1)∧rx,j ∨ (x′′j ⊕ cj−1)∧cj−1. After some
algebraic manipulation, the following can be derived:

cj = (x′′j ⊕ rx,j) ∧ rx,j ∨ (x′′j ⊕ rx,j) ∧ cj−1 (31)

The conversion function is now in the carry look-ahead form that is required
for fast calculation on the FPGA; with rx,j and cj−1 as the data inputs to
the multiplexers, and (x′′j ⊕ rx,j) as the control input. As above, we must now
determine if the multiplexers comply with the secure computation condition.
It appears that data input rx,j is statistically independent of the control input
(x′′j ⊕rx,j), because x′′j incorporates randomness from bit cj−1 as well as from bit
rx,j (equation (26)). However, when j = 0, c−1 is fixed at zero, and the control
input becomes simply x0, i.e. one secret bit is unmasked.

Clearly, we must avoid computing (x′′j ⊕ rx,j) when j = 0. Our solution is
to remove one multiplexer from the carry chain, and to use an FPGA LUT to
calculate c0 directly. From equation (31), c0 = x′′0 ∧ rx,0, which could itself be
the focus of a side-channel attack. Therefore, as in the case of the Boolean-to-
Arithmetic conversion, we introduce a Boolean masking bit q, giving:

c0 = (x′′0 ∧ rx,0)⊕ q (32)

Technically, this equation violates the secure computation condition, as the in-
termediate result (x′′0 ∧ rx,0) is not independent of the secret bit x0. However, if
an FPGA LUT is used to calculate c0, it can be shown that the LUT output is
statistically independent of x0, therefore the LUT does not leak information.

Finally, the other 31 masked values of cj can be calculated using the fast carry
chain, according to:

cj ⊕ q = (x′′j ⊕ rx,j) ∧ (rx,j ⊕ q) ∨ (x′′j ⊕ rx,j) ∧ (cj−1 ⊕ q) (33)

As in the case of Boolean-to-Arithmetic masking, additional LUTs are required
to remove the masking bit q, via x′j = x′′j ⊕ (cj−1 ⊕ q)⊕ q.

6 Masked FPGA Implementation

The above section detailed the proposed masking schemes for the SHA-256 com-
pression function. Note that in order to remove the masks rA–rH at the end
of the 64th iteration of the compression function, it is necessary to compute

330 R. McEvoy et al.

mask update terms in parallel with the masked compression function. The com-
plete masked core design contains: sixteen 32-bit registers; thirteen adders; seven
Boolean-to-Arithmetic conversion blocks; two Arithmetic-to-Boolean conversion
blocks; as well as circuits implementing the

∑

0
,

∑

1
, Maj′ and Ch′ functions.

On our Spartan-3E chip, the masked processor and interface circuitry utilise
1734 slices (37% of FPGA resources), and the design’s critical path is 18.6 ns.
Hence, although the area has almost doubled compared with the unprotected im-
plementation, the speed has not been overly affected. The required random bits
could be generated, for example, by a cryptographically secure pseudo-random
number generator implemented on the FPGA, as described in [20]. For simplic-
ity, in our case we pre-generated the required random bits, and stored them in
BRAM on the FPGA. By repeating the experiments described in section 3, we
verified that the data-dependence of the power consumption has been removed;
therefore, the design is resistant to standard first-order DPA attacks.

We note that more sophisticated first-order DPA attacks are still possible, for
example by considering the side-channel leakage due to glitches [13]. However,
such attacks rely on the strong assumption that the attacker has very detailed
knowledge of the design, such as a back-annotated netlist, from which an exact
power model can be extracted.

7 Conclusions

It has been shown that implementations of the HMAC algorithm are suscepti-
ble to side-channel attacks. An explicit DPA attack strategy for HMAC-SHA-2
has been presented, and the attacks have been verified with actual FPGA-based
experiments. A hardware-based masked core for SHA-2 hash functions has been
designed, which counteracts first-order DPA attacks. The Boolean-to-Arithmetic
and Arithmetic-to-Boolean conversion circuits, which are traditionally consid-
ered to be slow, have been optimised for implementation on FPGAs. This useful
adaptation can be used to mask other algorithms that mix Boolean and arith-
metic functions, such as IDEA or RC6. Future work will focus on securing the
HMAC algorithm against other forms of side-channel attack, such as higher-order
DPA and template attacks. Another avenue for further research is to investigate
how throughput optimisation techniques can be applied to SHA-2 implementa-
tions, while maintaining the DPA attack countermeasures.

Acknowledgements

The authors would like to acknowledge the comments of the anonymous re-
viewers, as well as the reviewers of an earlier draft of this paper. This work
was supported in part by the Embark Initiative, operated by the Irish Research
Council for Science, Engineering and Technology (IRCSET).

Differential Power Analysis of HMAC 331

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

4. Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: Improving SHA-2 hardware
implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 298–310. Springer, Heidelberg (2006)

5. Coron, J.-S., Tchoulkine, A.: A new algorithm for switching from arithmetic to
boolean masking. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS,
vol. 2779, pp. 89–97. Springer, Heidelberg (2003)

6. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol, Version
1.1. RFC 4346 (April 2006), http://tools.ietf.org/html/rfc4346

7. Golić, J.D.: Techniques for random masking in hardware. IEEE Transactions on
Circuits and Systems — I 54(2), 291–300 (2007)

8. Goubin, L.: A sound method for switching between boolean and arithmetic mask-
ing. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
3–15. Springer, Heidelberg (2001)

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Lemke, K., Schramm, K., Paar, C.: DPA on n-bit sized boolean and arithmetic op-
erations and its application to IDEA, RC6, and the HMAC-Construction. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 205–219. Springer,
Heidelberg (2004)

11. Lenstra, A.K.: Further progress in hashing cryptanalysis (white paper) (February
2005), http://cm.bell-labs.com/who/akl/hash.pdf

12. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

13. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005)

14. Manral, V.: Cryptographic Algorithm Implementation Requirements for Encapsu-
lating Security Payload (ESP) and Authentication Header (AH). RFC 4835 (April
2007), http://tools.ietf.org/html/rfc4835

15. Neiße, O., Pulkus, J.: Switching blindings with a view torwards IDEA. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 230–239. Springer,
Heidelberg (2004)

16. National Institute of Standards and Technology. FIPS PUB 180-2. Secure Hash
Standard (August 2002)

17. National Institute of Standards and Technology. FIPS PUB 198. The Keyed-Hash
Message Authentication Code (HMAC) (March 2002)

18. Okeya, K.: Side channel attacks against HMACs based on block-cipher based hash
functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058,
pp. 432–443. Springer, Heidelberg (2006)

http://tools.ietf.org/html/rfc4346
http://cm.bell-labs.com/who/akl/hash.pdf
http://tools.ietf.org/html/rfc4835

332 R. McEvoy et al.

19. Okeya, K., Iwata, T.: Side channel attacks on message authentication codes. In:
Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS 2005. LNCS, vol. 3813, pp. 205–
217. Springer, Heidelberg (2005)

20. Schellekens, D., Preneel, B., Verbauwhede, I.: FPGA vendor agnostic true ran-
dom number generator. In: FPL 2006. 16th International Conference on Field Pro-
grammable Logic and Applications, pp. 139–144. IEEE (August 2006)

21. Steinwandt, R., Geiselmann, W., Beth, T.: A theoretical DPA-based cryptanalysis
of the NESSIE candidates FLASH and SFLASH. In: Davida, G.I., Frankel, Y.
(eds.) ISC 2001. LNCS, vol. 2200, pp. 280–293. Springer, Heidelberg (2001)

22. Tunstall, M., Hanley, N., McEvoy, R., Whelan, C., Murphy, C.C., Marnane, W.P.:
Correlation power analysis of large word sizes. In: IET Irish Signals and Systems
Conference (ISSC) 2007. IEEE (submitted, 2007)

23. Xilinx. Spartan-3 Generation FPGA User Guide (July 2007),
http://direct.xilinx.com/bvdocs/userguides/ug331.pdf

http://direct.xilinx.com/bvdocs/userguides/ug331.pdf

Provably Secure Countermeasure Resistant to

Several Types of Power Attack for ECC�

JaeCheol Ha1, JeaHoon Park2, SangJae Moon2, and SungMing Yen3

1 Dept. of Information Security, Hoseo Univ., 336-795, Korea
jcha@hoseo.edu

2 School of Electrical Eng. and Computer Science, Kyungpook National Univ.,
702-701, Korea

{jenoon65,sjmoon}@ee.knu.ac.kr
3 Dept. of Computer Science and Information Eng., National Central Univ.,

Chung-Li, Taiwan 320, R.O.C.
yensm@csie.ncu.edu.tw

Abstract. Recently, it has been shown that some cryptographic devices,
such as smart card, RFID and USB token, are vulnerable to the power
attacks if they have no defence against them. With the introduction of
new types of power analysis attack on elliptic curve cryptosystem (ECC)
which is implemented in these secure devices, most existing countermea-
sures against differential power analysis (DPA) are now vulnerable to
new power attacks, such as a doubling attack (DA), refined power anal-
ysis attack (RPA), and zero-value point attack (ZPA). Mamiya et al.
recently proposed a countermeasure (so-called BRIP) against the DPA,
RPA, ZPA, and simple power analysis (SPA) by introducing a random
initial value. Yet, the BRIP was also shown to be vulnerable to the
address-bit DPA by Itoh et al. and the 2-torsion attack by Yen et al..
Accordingly, this paper proposes a secure countermeasure based on a
message-blinding technique. A security analysis demonstrates that the
proposed countermeasure is secure against most existing power attacks
with just a few additional registers.

Keywords: ECC, Side channel attack, Power analysis attack, Smart
card.

1 Introduction

In ubiquitous environments, some cryptographic devices become very useful tools
to provide security services due to its portability, arithmetic power, storage ca-
pacity, and so on. In 1999, Kocher introduced power analysis attacks to cryp-
tographic devices such as smart card, RFID, and USB token [15]. Since then,
many power analysis attacks have been proposed and countermeasures presented

� This research was supported by the MIC of Korea, under the ITRC support program
supervised by the IITA(IITA-2007-C1090-0701-0026).

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 333–344, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

334 J. Ha et al.

using various hardware and software techniques. Specifically, to implement el-
liptic curve cryptosystems (ECCs) with many cryptographic advantages, several
types of countermeasure have been suggested, including a random scalar multi-
plication algorithm [5], random blinding on a point [5], random projective coor-
dinate algorithm [5], and several approaches using special forms of elliptic curve
(e.g., Montgomery form [9], Jacobian form [17], and Hessian form [13]). While
Coron’s countermeasures in [5] seemed to provide good security against a dif-
ferential power analysis (DPA), recent research has highlighted new weaknesses
related to new types of power analysis attacks. Coron’s first countermeasure in-
volves an additional computational overhead due to the large bit-length of the
secret key, and his second countermeasure, the point blinding method, has been
shown to be vulnerable to the Doubling Attack (DA) proposed by Fouque and
Valette [16]. Furthermore, most randomization techniques (including Coron’s
third countermeasure, random elliptic curve isomorphism and random field iso-
morphism), which were originally considered to be secure against the DPA, have
been shown to be vulnerable to the refined power analysis (RPA) proposed by
Goubin [10] and a recent extension of the RPA, called the zero-value point attack
(ZPA), proposed by Akishita et al. [19]. Thus, at this time, none of the many
countermeasures, including Coron’s three methods, is secure against the above
attacks.

To defeat these power attacks, Itoh et al. proposed two countermeasures,
the Randomized Linearly-transformed Coordinates(RLC) and the Randomized
Initial Point(RIP) which scans the key from LSB to MSB [6]. In CHES-2004,
Mamiya et al. proposed a new countermeasure (called the BRIP [4]) which also
uses a random initial point. However, this method is still vulnerable to the 2-
torsion attack ((N − 1) attack applied to an RSA system) based on exploiting
specially chosen input messages and doesn’t care about address-bit DPA. Even
the exponent splitting(ES) method, thought to be secure against almost power
attacks until now, can be threatened by the 2-torsion attack.

Accordingly, to solve the above mentioned problems of new vulnerability, this
paper presents an enhanced countermeasure involving a message-blinding tech-
nique and Shamir’s trick. The proposed countermeasure has several advantages
compared with previous methods, providing a strong security against power
analysis attacks using message-blinding multiplication with random point P +R
for each iterative operation. Additionally, we in detail give some fundamental
reason and formulated analysis about power analysis attacks.

The rest of this paper is organized as follows. The next section describes
the fundamental operations of an ECC and provides a brief review of power
analysis attacks (including SPA, DPA, DA, RPA, ZPA, 2-torsion attack, and
address-bit DPA). Section 3 then presents the proposed countermeasure based
on an enhanced message-blinding technique. Previous power attack techniques
are analyzed to prove the strength of the proposed countermeasure in Section 4,
and some implementation considerations and final conclusions are given in
Section 5, 6.

Provably Secure Countermeasure Resistant 335

2 Elliptic Curve Cryptosystem and Power Attacks

2.1 Elliptic Curve Cryptosystems

The security of an ECC over finite group depends on the intractability of the el-
liptic curve analogue of the discrete logarithm problem. This problem has already
been extensively studied and is well known to be computationally intensive.

An elliptic curve E over a finite group K is a set of points (x, y) that are
solutions of a bivariate cubic equation. This curve has one point O at infinity
that is the identity element of the group. For example, the elliptic curve defined
on a field K = GF (2n) where n is prime, is the set of solution point (x, y) to an
equation of the form

y2 + xy = x3 + ax2 + b (1)

with a, b ∈ K. Let P = (x1, y1) �= O be a point, then the inverse of P is
−P = (x1, x1 + y1). Let Q = (x2, y2) �= O be a second point with Q �= −P , the
addition P +Q can be computed as follows.

x3 = λ2 + λ+ x1 + x2 + a

y3 = λ(x1 + x3) + x3 + y1

where
λ =

y1 + y2
x1 + x2

.

And next is doubling operation 2P .

x3 = λ2 + λ+ a

y3 = x2
1 + λx3 + x3

where
λ = x1 +

y1
x1

.

To compute the subtraction of point P = (x, y), add point−P . The addition of
point P to itself d times is called a scalar multiplication by d and denoted as Q =
dP . A binary algorithm is normally used to compute the scalar multiplication
Q = dP . Here, we assume that d is a secret scalar integer and target information
of attacker.

2.2 Power Analysis Attacks

To be resistant to the SPA attack, Coron proposed a simple countermeasure
based on modifying the standard binary L-R method [5]. Nonetheless, even
though the algorithm is resistant to the SPA attack, it remains vulnerable to the
DPA and other power attacks. Coron suggested three countermeasures to pro-
tect against the DPA: randomizing the private exponent, blinding point P , and
randomizing the projective coordinates. An improved version of Coron’s third
countermeasure has also been proposed by Joye and Tymen[14]. However, most

336 J. Ha et al.

countermeasures, including the above methods, have a computational overhead
and are vulnerable to the DA, RPA, ZPA, and address-bit DPA.

In 2003, Goubin proposed a new power analysis, namely a refined power anal-
ysis (RPA), which assumes that an adversary can input adaptively chosen mes-
sages on elliptic curve points to the target scalar multiplication algorithm [10].
However, the RPA attack is still a threat to many countermeasures.

A ZPA is an extensive RPA attack, where the attacker uses a special point that
has a zero-value on coordinate. Meanwhile, a ZPA attack utilizes an auxiliary
register that may take a zero-value in the definition field [19]. Coron’s third or
random field isomorphism countermeasures do not protect against ZPA attack.
Thus, to protect against RPA and ZPA attacks, the base point P or secret scalar
d should be randomized.

The address-bit DPA is based on the fact that when data is loaded from
various addresses, the power consumption changes in according to Hamming
weight of addresses [7]. In [8], the authors used about 10,000 power traces to
perform an address-bit DPA in their experiment. Also, they presented a practical
countermeasure against address-bit DPA, which used the randomized addressing
technique without additive computational cost.

2.3 The Mamiya et al.’s Method and the 2-Torsion Attack

To protect against the above new power attacks, Mamiya et al. recently pro-
posed a countermeasure called the BRIP(Binary Random Initial Point) that
uses a random point R. In their method, dP + R is computed using the sim-
ple algorithm depicted in Fig. 1, then R is subtracted to get dP . Moreover,
(dP + (11̄1̄ · · · 1̄1̄)R) − R is computed to protect against the SPA where 1̄ de-
notes −1. Kim et al. independently proposed an RSA version to protect against
power attacks [2]. Yet, the RSA version should involve the computation of an
inversion of a random number r because ECC version of BRIP uses a negative
random point −R shown as Fig. 1.

However, the BRIP was recently attacked using special input (N − 1) data
(so called (N−1) attack) developed by Yen et al. in RSA or the 2-torsion attack
in an ECC [18]. The attack uses the unique property of the BRIP, where the
intermediate values during their execution are always the original ones plus a

Input: d = (dn−1, · · · , d0)2, P
Output: Q = dP

1. R =randompoint()
2. T [0] = R, T [1] = −R, T [2] = P −R
3. for i from n− 1 downto 0 do
3.1 T [0] = 2T [0]
3.2 T [0] = T [0] + T [di + 1]
4. return(Q = T [0] + T [1])

Fig. 1. The binary expansion with RIP (BRIP)

Provably Secure Countermeasure Resistant 337

random point R. Thus, if a malicious 2-torsion point G(a point which becomes
O after a doubling operation, 2G = O) generated by an attacker is inputted
into the algorithm, then the intermediate values will be R or G+R in Step 3.2
of Fig. 1, which are dependent on a secret key d. Another approach to mount
this attack is possible in the operation of Step 3.1. At the end of each iteration,
there are only two possible computations, if di = 0, then T [0] = 2R, if di = 1,
then T [0] = 2(G+R). As only two possible keys can be derived, a trial-and-error
approach attack can be used to select the correct d. In this 2-torsion attack, only
one power consumption trace is needed. Even though this attack is applicable
to special elliptic curves with a 2-torsion point, there is a point with an order
of 2 for standard recommended curves over binary fields, although not over
prime fields. So the BRIP has a similar security flaw, such as small subgroup
attacks as presented in [11]. Also, BRIP has to be considered about address-
bit DPA, because BRIP only uses constant three registers for every execution
(T [0], T [1], T [2]).

2.4 The Exponent Splitting Method and the 2-Torsion Attack

As a countermeasure against the DPA, Clavier and Joye presented a method
called ES-I(Exponent Splitting) that splits the scalar(exponent in exponentia-
tion) and computes dP = rP + (d − r)P for a random number r [1]. This ES-I
requires at least twice the processing time. In another method(ES-II) by Ciet
and Joye, the scalar multiplication is computed using �d/r�(rP) + (d mod r)P
[12]. In [4], Mamiya et al. also said that ES is a secure method against the DPA,
RPA, and ZPA. However, the ES-I has recently been known to be vulnerable
by Muller and Valette using various high-order attacks such as safe-error, fault,
address-bit, and combined attacks[3]. Among these four attacks, only address-bit
attack belongs to power attack.

Next, the 2-torsion attack is applied to ES-I. Suppose an attacker can find the
2-torsion pointG and inputs it to compute rP . Even though rP can be computed
with other power attack countermeasures, such as the BRIP or doubling-and-
add-always algorithm, the attacker can derive a secret random number r and
d− r in two independent scalar multiplications using the 2-torsion attack. Thus,
each term in ES-I should be computed using an algorithm resistant to all existing
power attacks, including the 2-torsion attack. In the ES-II method, r is detected
during the computation of S = rP using 2-torsion attack. Also, �d/r� and (dmod
r) are detected during the computation of �d/r�S + (d mod r)P = �d/r�P +
(d mod r)P , because all intermediate values are 3 types P , 2P or O when r is
odd. If r is even and input point is G = 2P = O then S = rP = rG = O. The
(d mod r) are also detected during the computation of (d mod r)P .

3 New Countermeasure Against Power Analysis Attacks

This section describes the proposed countermeasure that can protect against
all existing power attacks, including the SPA, DPA, DA, RPA, ZPA, 2-torsion

338 J. Ha et al.

attack, and address-bit DPA. The basic idea of the proposed countermeasure
with message-blinding method is blind of a point using a random point (P +R).
Here, it is assumed that the number of points on the curves, #ε is n-bit. Thus,
t(P +R) + sR+ (2n− 1)(P +R) is finally computed instead of dP , where t and
s are n-bit positive integers. The final result dP is obtained by computing

dP = (k#ε+ d)P
= (k#ε+ d− (2n − 1))(P +R) + (#ε− d)R+ (2n − 1)(P +R)
= t(P +R) + sR+ (2n − 1)(P +R)

=
n−1
∑

i

2i(ti(P +R) + siR+ (P +R)), (2)

where #εR is equal to a point O at infinity. Now, let t = k#ε + d − (2n − 1)
and s = #ε− d be n-bit integers, then the smallest integer k is chosen such that
(k − 1)#ε + d < (2n − 1) < k#ε + d. Thus, k is 1 or 2. The core idea of the
algorithm is the simultaneous scalar multiplication of the above three operations
t(P +R), sR, and (2n − 1)(P +R), as described in Fig. 2. By using a message-
blinding technique, the intermediate values of the temporary registers used in
each iteration are randomly changed.

Input: d = (dn−1, · · · , d0)2, P
Output: Q = dP

Pre-computation
1. t = k#ε + d− (2n − 1), s = #ε− d
2. choose a random elliptic point R and random bits u, v
3. T [00⊕ uv] = P + R, T [01⊕ uv] = P + 2R, T [10⊕ uv] = 2P + 2R,

T [11⊕ uv] = 2P + 3R
Evaluation

4. Q = T [tn−1sn−1 ⊕ uv]
5. for i from n− 2 downto 0 do
5.1 Q = 2Q
5.2 Q = Q + T [tisi ⊕ uv]
6. return(Q)

Fig. 2. The proposed message-blinding scalar multiplication algorithm

Even if an attacker tries to input special points to attempt the RPA or ZPA,
the proposed method remains effective, as point P is blinded by the random
point R in Eq. (2). Point R should be changed for each scalar multiplication,
otherwise the randomized projective coordinate technique can be used to gen-
erate a random point. Also, two random bit u and v can be used to defeat the
address-bit DPA with just XORs. This method is a simple countermeasure by
randomizing registers according to random bits during a scalar multiplication[8].
Therefore, the proposed countermeasure in Fig. 2 can protect against the power
attacks (DPA, DA, RPA, ZPA, and address-bit DPA), as well as 2-torsion attack.
Above mentioned roughly security analysis is summarized in Table 3.

Provably Secure Countermeasure Resistant 339

Table 1. Comparison of security

Algorithm SPA DPA DA
RPA/
ZPA

2-torsion
attack

Address-
bit DPA

Scalar Multiplication
with Dummy Operation [5]

O × × × × ×
BRIP Algorithm [4] O O O O × ×
Exponent Splitting
Algorithm(ES-II) [12]

O O O O × ×
Proposed Algorithm O O O O O O

O : secure or support × : insecure or not support.

4 Security Analysis

For a security analysis of the proposed countermeasure, it was assumed that the
attacker could collect side-channel information, simulate a target algorithm in off-
line using a guessed key, detect a resemblance when the same operation is done
twice, and detect a register having a special point, for example, (x, 0) or (0, y).
The following attack scenario describes the typical side-channel attack method.

– Setup. Attacker makes a chosen message set to input into the target device.
– Challenge. The device operates a cryptographic algorithm as soon as the at-

tacker sends an input message. However, the device always leaks side-channel
information during cryptographic operations. The attacker can measure this
power signal.

– Analysis. The attacker analyzes the correlation between the input message
and the side-channel information collected during the cryptographic opera-
tions. The attacker then deduces the real secret information used in certain
operations by the device when adopting the countermeasure algorithm.

As seen in Fig. 3, Pi is the i-th input message and d is the secret key used
in certain operations in the device. The device sends the cipher text Ci = d · Pi

to the attacker along with side-channel information. Next, the security of the

Attacker

Pi−−−−−−−−−−→

Side-Channel
Information
< −−−−−

Ci←−−−−−−−−−−

Device

Fig. 3. Typical side-channel attack scenario

340 J. Ha et al.

proposed countermeasure against existing power analysis attacks is evaluated
using the analysis procedure in the side-channel attack scenario. The attacks are
classified into two types using the power analysis model.

4.1 Attack Type-I

Assuming that the attacker already knows the key from MSB to the (j−1)-th bit
of the secret key, the attacker guesses the j-th bit of the secret key, then analyzes
the collected side-channel information using intermediate values resulting from
the operation with Pi and from MSB to the j-th bit of the secret key. Among
the existing power analysis attacks, the DPA, RPA, and ZPA can all be included
in Attack Type-I.

Security against Attack Type-I. The attacker guesses the j-th secret key bit,
and computes an intermediate value using an off-line simulation. The attacker
then sends some messages to the device and monitors the symptoms of the
power signal using side-channel information. By finding a special signal peak,
the attacker confirms whether the guessed secret key is correct or not.

Theorem 1. The success probability of Attack Type-I, against the proposed
countermeasure, is less than or equal to 1

l . Here, l is the order of an EC over K.

Proof. We denote that this fd(·) is a proposed algorithm with secret key d.
The equation fdj(P) represents an intermediate value after the operation of the
proposed algorithm with point P and the secret key from MSB to the j-th bit,
where d is the n-bit secret key and di is the i-th bit of the secret key. Then we
have

fdj(P) =
j−1
∑

i=0

tn−1−i · 2j−1−i(P +R) +
j−1
∑

i=0

sn−1−i · 2j−1−iR+
j−1
∑

i=0

2j−1−i(P+R)

=
j−1
∑

i=0

(tn−1−i + 1) · 2j−1−iP +
j−1
∑

i=0

(tn−1−i + sn−1−i + 1) · 2j−1−iR. (3)

Above Eq. (3) consists of
∑j−1

i=0 (tn−1−i + 1) · 2j−1−i · P and
∑j−1

i=0 (tn−1−i +
sn−1−i + 1) · 2j−1−i · R, that is, the intermediate value which contains P and a
random value. Even though the attacker guesses the j-th bit of the secret key,
then computes an intermediate value using the guessed secret key and analyzes
the side-channel information, they cannot obtain any useful information when
the guessed intermediate value is not correct. So, the probability of an attacker
correctly computing fdj(P) is 1

l , where l is the order of an EC over K, because
of intermediate value’s random factor.

Because 1
l is the probability of making correct intermediate value only at

once, DPA attacker’s success probability decreases. In other word, DPA attacker
should collect power consumption signal of correct intermediate value at the some
threshold ratio among the collected power consumption signals, in case of guessed
key is correct, in order to have a special signal peak during analysis procedure.

Provably Secure Countermeasure Resistant 341

And, if RPA, ZPA attacker guesses intermediate value with R according to secret
key d, then attack success probability can be 1

l . ��
If the attacker does not know the random point R or intermediate multiplicative
results of R, which are stored at the end of every iteration, they can obtain
some information about the secret key with negligible probability. Therefore,
this analysis confirms that the proposed countermeasures can resist the Attack
Type-I, including DPA, RPA, and ZPA.

4.2 Attack Type-II

The attacker creates a malicious message that causes a distinguishable pattern
according to a secret key during a cryptographic operation, then observes the
pattern in the measured side-channel information. Thus, the attacker can exploit
the secret key that causes the distinguishable pattern. Among the existing power
analysis attacks, a DA and 2-torsion attack can be included as Attack Type-II
which is based on simple power analysis.

Security against Attack Type-II. The attacker creates a malicious message
2P or G(2-torsion point on an elliptic curve) that causes a significant pattern,
then inputs the message and observes the side-channel information.

Plus, f ′d(·) is denoted as an add-and-double-always algorithm. The core idea
of a doubling attack is summarized as follows. The intermediate value f ′dj

(P) of
an add-and-double-always algorithm with P and from MSB to the j-th bit of
the secret key d is represented as follows.

f ′dj
(P) =

j−1
∑

i=0

dn−1−i · 2j−1−i · P

= dn−1 · 2j−1 · P + ...+ dn−j+1 · 21 · P + dn−j · 20 · P (4)

In the case of dn−j is zero, the above equation can be transformed as follows.

f ′dj
(P) = dn−1 · 2j−1 · P + ...+ dn−j+1 · 21 · P

= dn−1 · 2j−2 · 2P + ...+ dn−j+1 · 20 · 2P = f ′dj−1
(2P) (5)

When dn−j is zero, doubling related to j+1-th bit with input P and doubling
related to the j-th bit with input point 2P are the same operation with an
identical intermediate value. Thus, the attacker can exploit the secret key by
detecting the same power consumption signal during two scalar multiplications,
inputted P and 2P .

Theorem 2. The proposed countermeasure is secure against Attack Type-II.

Proof. Following equations are intermediate value of the proposed countermea-
sure with P and from MSB to the (j + 1)-th bit of the secret key in Fig. 2.

342 J. Ha et al.

Step 5.1 Q = 2 · fdj(P) (6)
Step 5.2 Q = Q+ (tn−j−1 + 1) · P + (tn−j−1 + sn−j−1 + 1) +R

=
j

∑

i=0

(tn−1−i + 1) · 2j−iP +
j

∑

i=0

(tn−1−i + sn−1−i + 1) · 2j−iR

= fdj+1(P) (7)

As shown in the Eq. (7), the random value ((tn−1−i + 1) · P + (tn−1−i +
sn−1−i +1) ·R) is always added to each iteration. Moreover, even if the attacker
inputs a malicious message P ′ instead of P , the intermediate value of every step
contains the random value of (tn−1−i + sn−1−i + 1) · R regardless of the point
P ′. Therefore, the 2-torsion attack cannot be applied by any adversary.

Here, fdj+1(P) consists of two terms which are the intermediate value, which
contains P , and a random value

∑j
i=0(tn−1−i + sn−1−i + 1) · 2j−i · R that can

be written as follows.

j
∑

i=0

(tn−1−i + sn−1−i + 1) · 2j−i · R

= (tn−1 + sn−1 + 1) · 2j ·R+ ...

+ (tn−j + sn−j + 1) · 21 · R+ (tn−j−1 + sn−j−1 + 1) · 20 ·R (8)

Suppose a special case, where the random value R′, for next operation, is
updated by 2R for the next scalar multiplication, i.e. R′ = 2R. By the fact
that (tn−j−1 + sn−j−1 + 1) can not be zero. That is, no attacker can make
equation fdj(P) = fdj−1(2P), even if random point was updated by 2R. Due to
the randomness of the intermediate value, it is difficult to make the same value
as fdj(P) for any bit iteration, even when inputting a message. ��
Consequently, an attacker who does not know the random pointR cannot acquire
any information about the secret key using Attack Type-II. As a result of security
analysis about the proposed countermeasure, the attacker who don’t know about
the random point R cannot acquire any information about the secret key in
actually, using Attack Type-I or Attack Type-II.

5 Implementation Consideration

To compare the efficiency, the number of required registers and computation
load is considered. Following Table 2 shows the brief comparison where, n is bit
length of secret key, D is doubling operation and A is addition operation.

In practical implementation, to provide randomness for the random point,
it is assumed that the initial random point R is generated by finding the x-
coordinate randomly and computing the corresponding y-coordinate. A simple
way is to update the stored random point by R′ = kR (k is a small integer
(k ≥ 2)). However, we want to emphasize that if the RIP is updated by R′ = 2R

Provably Secure Countermeasure Resistant 343

Table 2. The Number of Required Register and Computational Cost

Algorithm � of register Computational Cost

Scalar Multiplication
with Dummy Operation [5]

2 n ·D + n · A
BRIP Algorithm [4] 3 n ·D + (n + 3) · A
Exponent Splitting
Algorithm(ES-II) [12]

4 2n ·D + 2n ·A
Proposed Algorithm 5 (n + 1) ·D + (n + 4) · A

for each scalar multiplication, in BRIP this can be attacked by doubling attack by
selecting P and 2P as inputs. The reason is that the intermediate values of BRIP
are always X +R type where X is the original (unmasked) intermediate values
and R is the RIP (Random Initial Point) in each scalar multiplication. But, the
intermediate values of ours are X + Y type where Y is a random value but not
the simple RIP. So, even though the random point is updated by R′ = 2R, our
countermeasure is not vulnerable to the doubling attack. Furthermore, the RSA
version of proposed algorithm does not involve the computation of an inversion
because ECC version have no negative random point −R.

6 Conclusion

Most existing countermeasures against power attacks are vulnerable to the new
types of attack, such as the DA, RPA, ZPA, and address-bit DPA. In addition,
the more recently proposed countermeasure, BRIP, is also vulnerable to 2-torsion
attack and address-bit DPA. Accordingly, this paper presented a countermeasure
against the new types of power attacks, as well as the 2-torsion attack and
address-bit DPA that threatens the BRIP and ES method. Moreover, we offer
the formulated security analysis about proposed countermeasure. The proposed
algorithm has a similar computational cost when compared to previous SPA
countermeasures and only requires three additional registers. Note, the proposed
countermeasure can be applied to RSA as well as ECC systems without any
inversion, and has a strong security based on a message-blinding technique.

References

1. Clavier, C., Joye, M.: Universal exponentiation algorithm. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg
(2001)

2. Kim, C., Ha, J., Kim, S., Kim, S., Yen, S., Moon, S.: A secure and practical CRT-
based RSA to resist side channel attacks. In: Laganà, A., Gavrilova, M., Kumar,
V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp.
150–158. Springer, Heidelberg (2004)

3. Muller, F., Valette, F.: High-order attacks against the exponent splitting protec-
tion. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 315–329. Springer, Heidelberg (2006)

344 J. Ha et al.

4. Mamiya, H., Miyaji, A., Morimoto, H.: Efficient countermeasure against RPA,
DPA, and SPA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 343–356. Springer, Heidelberg (2004)

5. Coron, J.: Resistance against differential power analysis for elliptic curve cryptosys-
tems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

6. Itoh, K., Izu, T., Takenaka, M.: Efficient countermeasure against power analysis for
elliptic curve cryptosystems. In: Smart Card Research and Advanced Applications
VI – CARDIS 2004, pp. 99–113. Kluwer Academic Pub, Dordrecht (2004)

7. Itoh, K., Izu, T., Takenaka, M.: Address-differential power analysis of crypto-
graphic scheme OK-ECDH and OK-ECDSA. In: Kaliski Jr., B.S., Koç, Ç.K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 129–143. Springer, Heidelberg (2003)

8. Itoh, K., Izu, T., Takenaka, M.: A practical countermeasure against address-bit
differential power analysis. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES
2003. LNCS, vol. 2779, pp. 382–396. Springer, Heidelberg (2003)

9. Okeya, K., Sakurai, K.: Power analysis breaks elliptic curve cryptosystems even
secure against the timing attack. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT
2000. LNCS, vol. 1977, pp. 178–190. Springer, Heidelberg (2000)

10. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–210. Springer, Heidelberg
(2002)

11. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement at Technical Report CORR 98-05, Univ. of Waterloo
(1998)

12. Ciet, M., Joye, M. (Vertually)Free randomization technique for elliptic curve cryp-
tography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836,
pp. 348–359. Springer, Heidelberg (2003)

13. Joye, M., Quisquater, J.: Hessian elliptic curves and side-channel attacks. In: Koç,
Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 402–410.
Springer, Heidelberg (2001)

14. Joye, M., Tymen, C.: Protections against Differential Analysis for Elliptic Curve
Cryptography. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 377–390. Springer, Heidelberg (2001)

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

16. Fouque, P., Valette, F.: The doubling attack– why upwards is better than down-
wards. In: D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 269–280. Springer, Heidelberg (2003)

17. Liardet, P., Smart, N.: Preventing SPA/DPA in ECC systems using the Jacobi
form. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 391–401. Springer, Heidelberg (2001)

18. Yen, S., Lien, W., Moon, S., Ha, J.: Power Analysis by Exploiting Chosen Message
and Internal Collisions - Vulnerability of Checking Mechanism for RSA-Decryption.
In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 183–195.
Springer, Heidelberg (2005)

19. Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003)

Risk & Distortion Based K-Anonymity

Shenkun Xu and Xiaojun Ye

Key Laboratory for Information System Security, School of Software
Tsinghua, Beijing 100084, China

xsk@mails.tsinghua.edu.cn, yexj@tsinghua.edu.cn

Abstract. Current optimizations for K-Anonymity pursue reduction of
data distortion unilaterally, and rarely evaluate disclosure risk during
process of anonymization. We propose an optimal K-Anonymity algo-
rithm in which the balance of risk & distortion (RD) can be equilibrated
at each anonymity stage: we first construct a generalization space (GS),
then, we use the probability and entropy metric to measure RD for each
node in GS, and finally we introduce releaser’s RD preference to de-
cide an optimal anonymity path. Our algorithm adequately considers
the dual-impact on RD and obtains an optimal anonymity with satis-
faction of releaser. The efficiency of our algorithm will be evaluated by
extensive experiments.

1 Introduction

K-Anonymity model proposed by Samarati & Sweeney [17,18] can resolve vari-
ous issues of linkage attack in microdata releasing. The core requirement is that
each value of quasi-identifier (QI [3]) in released microdata should appears at
least K times. Generalization is the main anonymization mechanism for QI at-
tributes: it extends QI values according to their logical hierarchies to guarantee
the probability of identification for each individual is no more than 1/K.

Microdata usability is the key concern of K-Anonymity, and previous op-
timizations focus on elusion of data distortion. However the following issues
deserve to be investigated:

1) Previous K-Anonymity algorithms don’t implement generalization options
adequately. E.g. for a single QI attribute, all its values should be generalized
into same layer in its hierarchy [17,19]; for multiple QI attributes, their gen-
eralizations can’t be implemented synchronously [18]. As a result, some effi-
cient generalization options might get lost. We propose a generalization space
(GS) construction, where all candidates of generalization are enumerated at each
anonymity stage.

2) Although K-Anonymity model guarantees the disclosure risk for each re-
leased individual is no more than 1/K, the risk might be larger than 1/K before
end of anonymization. And risk can make interaction with distortion, which
means less distortion generally induces smaller reduction of risk. Therefore, the
risk factor can’t be ignored along anonymity path. We propose a probability
model to evaluate risk and an entropy model to evaluate distortion, which can
measure the integrated dual-impact on risk & distortion (RD) for anonymity.

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 345–358, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

346 S. Xu and X. Ye

3) Current K-Anonymity algorithms don’t have theoretical mechanism to
choose candidate from possible generalizations. E.g. The Datafly [17] system
makes generalization on QI attribute which has largest number of distinct val-
ues. We adopt utility theory to make decision of generalization option, which
integrates releaser’s preference about RD.

The remainder of this paper is organized as follows: In Sect. 2 we construct a
GS to enumerate all eligible candidates. Then we proceed in Sect. 3 to present
the RD metric and outline the search strategy of anonymity path. In Sect. 4 we
design a greedy K-Anonymity algorithm involved with issues discussed above.
In Sect. 5 we experimentally evaluate the effectiveness of our solution. In Sect. 6
we review some related works and conclude the paper with our future work in
Sect. 7.

2 Construction of Generalization Space

First, we use set partition theory to enumerate generalizations for each QI at-
tribute. Second, we make combination of multiple QI attributes’ generalization
to construct a GS which supplies entire candidates for search of anonymity path.

2.1 Enumeration of Generalizations for Single Attribute

Many studies [10,19] generalize values into the same layer in each QI attribute’s
hierarchy. This mode is so strict that lots of information might be lost. In fact,
we can generalize them into different layers and make them reasonable according
to their logical topology. We first introduce generalization for single QI attribute
formally, and then enumerate all possible generalizations based on set partition
algorithm.

Definition 1 (Generalization). For a QI attribute’s value domain D = {v1, v2,
. . . , vn}, if there exists D = D1∪D2 ∪ . . .∪Dk and ∀i, j ∈ {1, 2, . . . , k} Di∩Dj =
φ, then D1, D2, . . ., Dk is a generalization g for D, each Di is a subset of gener-
alization g.

We use set partition theory in combinational mathematics [12] to enumerate
all generalizations. The generalization sequence defined below is used to map
generalization in Algorithm 1.

Definition 2 (Generalization Sequence). For a value domain D = {v1≺v2≺ . . .
≺vn} and a given generalization g, sort all subsets of g relied on their minimum
value, label them start with 0 by order, mark all elements in one subset with
same label. Then the labels of vi construct a generalization sequence for g, this
is called serializing of g.

Example 1. For a value domain D = {x1≺x2 ≺ . . . ≺ x6}, the generalization is
g = {{x2, x4} , {x1, x6, x3} , {x5}}, we can get

〈

{x1,x6,x3}
0 , {x2,x4}

1 , {x5}
2

〉

, so the
generalization sequence is κ = 〈0, 1, 0, 1, 2, 0〉.

Risk & Distortion Based K-Anonymity 347

Definition 3 (Max Generalization Sequence). For a sequence κ of generaliza-
tion g, λ = 〈λ0, λ1, . . . , λn−1〉 is the max generalization sequence of g, where
λi = max {κ0, κ1, . . . , κi}.

(a) Education’s hierarchy (b) Education’s generalization list

Fig. 1. Enumeration of generalizations for attribute: Education. Each rectangle in (b)
stands for a generalization and 9 is 9th, 10 is 10th, B is Bachelors and M is Masters.

The definitions above are used in Algorithm 1 which is a revision of set partition
algorithm [15]. In algorithm SGE, the initial generalization needs each value to
be a subset separately and the generalization sequence is κ = 〈0, 1, . . . , n − 1〉.
This algorithm guarantees that each generalization can be generated only once,
which is circumstantiated in [7].

Algorithm 1. Single attribute generalization enumeration algorithm (SGE)

Fig. 2. Enumeration algorithm for single attribute’ generalization

Although algorithm SGE can get all generalizations, some of them are not
coincidental to attribute’s hierarchy. So the ineligible node in generalization list
should be removed. This is called generalization validation. The eligible gen-
eralization node should be: 1) For each generalization subset, all child of sub-
set’s least common ancestor should be gathered into it together. 2) All subsets
shouldn’t have same values. 3) The combination of subsets should contain all
values. The eligible generalization list of Fig.1(b) is shown in Fig.3(a).

348 S. Xu and X. Ye

2.2 Combination of Generalizations for Multiple Attributes

Synchronous generalization for multiple attributes can make efficient results than
asynchronous one. In this part, we make combination of generalizations for mul-
tiple attributes to gather multidimensional generalizations in GS.

(a) Education’ eligible generalization list (b) Sex’ eligible gener-
alization list

Fig. 3. Eligible generalization list for Education and Sex

Definition 4 (Generalization Space). The QI attributes are formed by QI =
{a1, a2, . . . , an}, and generalizations of ai | i ∈ {1, 2, . . . , n} are gai = {gai

1 , g
ai
2 ,

. . . , gai
mi
}, then the generalization space of QI is GS = {(ga1

i1
, ga2

i2
, . . . , gan

in
) | 1 ≤

ij ≤ mj}. And the number of elements in GS is
n
∏

i=1

mi.

The Algorithm 2 needs all QI attributes’ own eligible generalization list, which
can be combined into a GS for QI. The process of combination guarantees
that all generalizations can be generated once and only once, which is shown as
follows:

Algorithm 2. Multiple attributes generalization space construction algorithm
(MGS)

Fig. 4. Construction algorithm for multiple QI attributes’ generalization space

Risk & Distortion Based K-Anonymity 349

In algorithm MGS, the GS is formed by a tree and the initial eligible gener-
alization root node contains all heads of each QI attribute’s generalization list.
The initial start index is isn = 1 and the generalization tree for Education and
Sex is shown in Fig.5.

3 Search Strategy of Anonymity Path

We need to measure utilities of possible generalizations at each K-Anonymity
stage in GS. The measure factors include disclosure risk and data distortion
of generalizations. This section presents models of RD measure and gives the
search strategy of anonymity path by releaser’s preference.

Fig. 5. Education & Sex′ generalization tree for Fig.3

3.1 Risk Measure

Frequency of individual’s QI value is the main factor of risk measure. In a
microdata PT , for each tuple r, we set freq(qi(r)) as the frequency of r’s QI
value. If freq(qi(r)) is less than K, then r is an unsafe tuple. We define risk as
a series of ordered pairs [9]:

risk ≡ {(R1, P1) , . . . , (Ri, Pi) , . . . , (Rn, Pn)} . (1)

Ri(i = 1, 2, . . . , n) is a series of unexpected occurrences, and Pi(i = 1, 2, . . . , n)
is the probability of Ri. E.g. Ri represents that the ith tuple is unsafe, and
Pi = 1

freq(qi(r)) is the probability of Ri. To normalize risk metric, we set the risk
of PT as follows:

Risk =

∑

r∈PT,freq(qi(r))<K

1
freq(qi(r))

(r)
. (2)

The risk value calculated by Formula 2 falls into interval [0 ∼ 1]. When each tuple
has a unique QI value, the risk of PT reaches maximum 1, which indicates that
each tuple can be identified by linkage attract; when each tuple has a frequency
larger than K for QI value, the risk of PT can be ignored as zero.

350 S. Xu and X. Ye

3.2 Distortion Measure

Shannon entropy [22] is a useful tool to measure information and appears to
capture most successfully the general trend indicated by all measures. It is given
by:

Entropy = −
∑

qi∈QI(PT)

freq (qi)× log (freq (qi)) . (3)

Where QI(PT) is the value domain of QI attributes in PT . This formula leads
to the natural interpretation of Shannon entropy as the expectation of a random
variable that takes values log(freq(qi)) with probability freq(qi).
Shannon entropy has been used as a distortion measure by other authors

[13]. They consider adjusted entropy, whereas we use pre-anonymity entropy
minus post-anonymity entropy to quantify distortion. We denote the normalized
distortion as:

Distortion =
Entropy (QIpre)− Entropy (QIpost)

log (# (r))
. (4)

In Formula 4, the distortion of generalization for PT falls into interval [0 ∼ 1].
When each tuple in original PT has a unique QI value and all of them have been
generalized into the same value, the distortion reaches maximum 1, which is the
suppressive distortion; when all frequencies are not changed after generalization,
the distortion can be ignored as zero.

3.3 Preference Model

To make trade offs between risk and distortion which are inversely proportional
to each other, we adopt utility theory raised in insurance economics, which can
make qualitative and quantitative analysis in search strategy of anonymity path.

In economics, utility estimates satisfaction of people with some substance or
service. Welfare function is one of the common utility functions. Meanwhile,
risk aversion measure based on utility is an important issue of insurance. James
Cox & Vjollca Sadiraj [6] proposed a risk aversion model using two parameters:
income and wealth, which comprehensively takes influence of them into account.
In insurance, these issues are solved by multi-attribute utility theory (MAUT)
[8].

Definition 5 (Utility Function). Define μ(risk, distortion) as the utility func-
tion about RD, which describes the comprehensive utility of anonymity. Theo-
retically, data holder wants to release microdata with less risk and distortion. So
the utility function needs to satisfy: ∂μ

∂risk < 0 and ∂μ
∂distortion < 0.

This utility function has two dimensional parameters and can be predigested
into three categories (Table 1). The additive one is adopted in the rest of paper.

Risk & Distortion Based K-Anonymity 351

Table 1. Styles of function with two parameters

Function styles with parameters X and Y

Additive utility function μ(X, Y) = a · μX(X) + b · μY (Y)
Multiplicative utility function μ(X, Y) = (a · μX (X)) · (b · μY (Y))

Synthesis utility function μ(X, Y) = a · μX(X) + b · μY (Y) + c · μX(X) · μY (Y)

Definition 6 (Satisfaction Degree). The satisfaction degree (SD) indicates the
degree of releaser’s satisfaction with the process of anonymity. It is relative to
current utility value and the changes of utility. We can define it formally: ρ =
∂′′μ. When ρ < 0, it’s a descending SD; when ρ > 0, it’s an ascending SD;
when ρ = 0, it’s an invariable SD.

(a) ∂μ
∂risk

< 0, risk decrease (b) ∂μ
∂dist

< 0, distortion increase

Fig. 6. Relationships between μ and risk/distortion separately

The change of risk is one of the factors for SD. E.g. some releasers’ satisfaction
increases as risk decreases, which is strong risk aversion (Sra, ascending SD
in Fig.6(a)); contrarily, some releasers’ satisfaction decreases as risk decreases,
which is weak risk aversion (Wra, descending SD in Fig.6(a)); and if satisfaction
is not changed as risk decreases, it is neutral risk aversion (Nra, invariable SD
in Fig.6(a)).

The SD is also relative to change of distortion. E.g. some releasers’ satisfaction
decreases as distortion increases, which is strong distortion aversion (Sda, de-
scending SD in Fig.6(b)); contrarily, some releasers’ satisfaction increases as risk
increases, which is weak distortion aversion (Wda, ascending SD in Fig.6(b));
and if satisfaction is not changed as distortion increases, it is neutral distortion
aversion (Nda, invariable SD in Fig.6(b)).

The risk-distortion aversion categories are combined as nine kinds of utility
function (Table 2). The form of them can be polynomial, exponential and loga-
rithm. To unify RD measure metric, the polynomial utility function is adopted
below.

352 S. Xu and X. Ye

Table 2. Nine kinds of polynomial utility functions

Preference ρ(risk) ρ(distortion) Example of utility functions

Sra-Sda ascending descending μ = −a · √risk − b · dist2 + c

Sra-Nda ascending invariable μ = −a · √risk − b · dist + c

Sra-Wda ascending ascending μ = −a · √risk − b · √dist + c
Nra-Sda invariable descending μ = −a · risk − b · dist2 + c
Nra-Nda invariable invariable μ = −a · risk − b · dist + c

Nra-Wda invariable ascending μ = −a · risk − b · √dist + c
Wra-Sda descending descending μ = −a · risk2 − b · dist2 + c
Wra-Nda descending invariable μ = −a · risk2 − b · dist + c

Wra-Wda descending ascending μ = −a · risk2 − b · √dist + c

The utility functions above stand for nine categories of releaser’s preference,
which treat RD differently. At each anonymity stage, releasers use some utility
function to balance RD according to their different preference for search of
anonymity path.

4 Risk & Distortion Based K-Anonymity Algorithm

The RD based K-Anonymity algorithm (RDKA) is made up of two main fac-
tors: 1) Risk-distortion measures, which is the foundation of algorithm. We
adopt RD measure model and utility function to satisfy requirement of releaser’s
preference among different generalization options. 2) Greedy approach. At each
anonymity step, utility is estimated for each node in GS and the best anonymity
path is selected to converge to optimal anonymity. Meanwhile, we use greedy
idea to generalize only unsafe tuples, which leads less distortion. The RDKA
algorithm is described below.

Algorithm 3. Risk & Distortion based K-Anonymity algorithm (RDKA))

Fig. 7. RDKA algorithm

Risk & Distortion Based K-Anonymity 353

In step 2.5 ofRDKA, the root node ofGS should be removed because it means
there isn’t any change for generalization and infinite loop will be generated. In
step 2.2, if the number of unsafe tuples is less than K, any generalization can’t
satisfy requirement of K-Anonymity. These tuples should be deleted to avoid
disclosure.

5 Experiment

This section verifies the efficiency of our solution and compare it with clas-
sic anonymity algorithms (Datafly [17], Basic Incognito [10], NaiveClassfly+

[24]). The microdata is American census [25] about annual income in 1994. It
contains sensitive attribute {Salary} and QI attributes {Marital-status,Race,
Sex,Education}. The default premise condition of experiment without special
illumination is: Sra-Sda Preference, QI = {Marital-status,Race, Sex} and the
total number of tuples is 32561. All experiments were implemented on an Intel
Pentium IV3.4 GHz PC with 1 GB RAM and MS Visual C++ IDE.

5.1 Information Loss Analysis

Fig.8 shows the relationships of Distortion ∼ K and Distortion ∼ #(tuple).
For all algorithms, the distortion increases as K increases, because the num-
ber of unsafe tuples is increased and stricter global generalization is used to
satisfy requirement of anonymity; the distortion decreases as the number of tu-
ples increases, because the number of tuples in same anonymity group increases,
there are more tuples satisfying requirement of anonymity, and the distortion of
generalization will be decreased.

(a) Distortion vs. K (b) Distortion vs. #(tuple),K = 5

Fig. 8. Comparison of distortion using different K or #(tuple)

354 S. Xu and X. Ye

RDKA & Incognito both have less distortion than others because they adopt
greedy idea, which generalizes unsafe tuples and select the best generalization
at each anonymity stage. Incognito generalizes values into the same layer in
hierarchy and makes more distortion than RDKA, which generalizes values into
different layers.

Meanwhile, in Fig.8(a), RDKA makes more distortion as K increases, but
there are some exceptions, where distortion won’t be changed or even be de-
creased. The reasons are: 1) the requirement of anonymity might be satisfied
because of large number of unsafe tuples as K increases. E.g. suppose the num-
ber of unsafe tuples is num(k) and num(35) = 50, num(40) = 100, if all of their
unsafe tuples are generalized into two groups, then the former is 25

group and the
latter is 50

group . Obviously, the latter satisfies requirement of anonymity, whereas
the former still keeps its unsafe tuples risky and needs more generalization with
larger distortion; 2) as K increases, the number of unsafe tuples changes a bit
and same generalization might be used for different K. This is more frequent
when K increases tardily; 3) when K reaches boundary, the distortion will keep
smooth. This is because nearly all attributes are generalized completely, which
makes distortion to be closed to each other.

5.2 Releaser’s Preference Analysis

The distortions for different preference will differ with each other. Fig.9 shows
the relationship between distortion and releaser’s preference. In (a), all releasers
detest risk and Wda gets more information loss because it has less weight in
utility function than Sda. In (b), all releasers choose Sda, and Wra makes less
information loss because it has less weight in utility function than Sra. In (c),
if the risk aversion is stronger and distortion aversion is weaker, the distortion
will be larger because all their weights in utility function are extremely conduce
to distortion.

(a) Sra preference (b) Sda preference (c) Mixed preference

Fig. 9. Comparison of distortion using different preferences

Risk & Distortion Based K-Anonymity 355

However, in some cases, this rule will be broken. E.g. whenK = 50 in Fig.9(a),
Sda makes more information loss than Wda. This is because Sda aims to keep
data quality and adds weight of distortion in utility function, which can’t make
risk to be decreased quickly and need more generalizations. The anonymity path
becomes longer with more distortion. So for different K, releaser can choose
different utility functions to satisfy their preference and get more control modes.

5.3 Elapsed Time Analysis

Fig.10 shows the complexity of elapsed time for RDKA. In (a), the elapsed
time increases acutely as the number of QI increases. The reason is: the value
domain and number of QI attributes become larger; a huge GS is generated
and needs more time to estimate utilities. However, other algorithms implement
one generalization at each step, the elapsed time increases only with number of
steps, so the time rises smoothly.

(a) Elapsed time vs. #(QI), K = 5 (b) Elapsed time vs. K

Fig. 10. Comparison of elapsed time using different QI or K

In (b), the elapsed time of RDKA increases smoother than other algorithms
as K increase. The reasons are: 1) for RDKA, no matter how K is changed, the
GS is approximate and anonymity path is nearly same to each other. The little
increase of elapsed time forRDKA is used for more unsafe tuples’ generalization;
2) other algorithms need more steps of generalization and the path is longer asK
increases. E.g. whenK is very large,RDKA needs only one step of generalization
and other algorithms need at least five steps to satisfy requirement of anonymity.
So RDKA use main of elapsed time to construct GS and the elapsed time has
little relation with K.

356 S. Xu and X. Ye

Therefore, if the #(QI) is small, the value domain is narrow and K is very
large, RDKA gets efficient anonymity with less distortion and elapsed time. But
if the value domain is large,RDKA uses more time to construct GS and expends
time for better data quality. In addition, the single attribute generalization link
contains many invalid nodes, which will be deleted according to hierarchy tree.
If we can get all eligible node directly, the elapsed time will be decreased faster.

6 Related Works

K-Anonymity has been studied for more than ten years, which gradually be-
comes an important preprocess of data mining and its risk and distortion mea-
sures are hot issues in this field. They are summarized as follows:

Optimization of K-Anonymity. Many algorithms[2,4,5,10,21] lucubrate in gen-
eralization for K-Anonymity. We can divide them into two categories: 1) repre-
sented by [5,10] studies on global generalization of QI attributes, which modifies
all values into one topological layer. 2) represented by [4,21] studies how to gen-
eralize QI values into different layers, which reduce the information loss for
masking operations.

Measure of Information Loss. Realizing optimal K-Anonymity is NP -Hard
[1,14]. Therefore, lots of algorithms can only converge to the optimal K-
Anonymity gradually: [4,5,17,21] adopt greedy idea, while [2,10,16,19] use ex-
panded upgrade idea to optimize the information loss due to K-Anonymity.
Whereas, measure of information loss usually adopts straightforward category
measures [5], hierarchy measures [2] and other methods based on special appli-
cation scenarios [16,17].

Extension ofK-Anonymity. [11] proposes the multipleQI attributes anonymity
mechanism and applies K-Anonymity to classification scenarios; [24] discusses
multiple constraints of K-Anonymity; [13] studies the homogeneity attack and
proposes diversity solution; [23] proposes personalization ofK-Anonymity, which
considers individuals’ privacy purpose; and [20] studies the K-Anonymity using
sequential releasing, etc. Future work might consider techniques for integrating
these and other extensions into the scalable algorithm described in this paper.

7 Conclusion

In this paper, we adopt RD based decision-making mechanism in K-Anonymity,
which use utility function to make tradeoffs between risk and distortion at each
anonymity stage and choose the optimal anonymity path. Meanwhile, we de-
velop GS construction, which enumerates all eligible generalization nodes. The
experiment shows that our solution can achieve more efficient anonymity with
less distortion and provide optional manners for releasers’ preference control.
This is a new approach for dealing with RD conflict and also leads to a full-scale
study for privacy protection in microdata releasing.

Risk & Distortion Based K-Anonymity 357

Acknowledgments

This work was supported by NSFC 60673140 and HTRDP 2007AA01Z156.

References

1. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D.,
Zhu, A.: Approximation algorithms for k-anonymity. Journal of Privacy Technology
no. 20051120001 (2005)

2. Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In:
ICDE, pp. 217–228 (2005)

3. Bettini, C., Wang, X.S., Jajodia, S.: The Role of Quasi-identifiers in k-Anonymity
Revisited. TR 11-06, DICo, University of Milan, Italy (July 2006)

4. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and
privacy preservation. In: ICDE, pp. 205–216 (2005)

5. Iyengar, V.: Transforming data to satisfy privacy constraints. In: SIGKDD, pp.
279–288 (2002)

6. Cox, J.C., Sadiraj, V.: Small-and Large-Stakes Risk Aversion: Implications of Con-
cavity Calibration for Decision Theory. Games and Economic Behavior 56(1), 45–60
(2006)

7. Kawano, S.-I., Nakano, S.-I.: Constant Time Generation of Set Partitions. IEICE
Trans. Fundamentals E88-A(4) (2005)

8. Keeney, R., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value
Trade Offs. John Wiley & Sons, Chichester (1976)

9. Kevin, J., Soo, H.: How much is enough? A risk-management approach to computer
security[D]. School of Engineering, Stanford University (2000)

10. Lefevre, K., Dewitt, D.J., Ramakrishnan, R.: Incognito: Efficient full-domain k-
anonymity. In: SIGMOD, pp. 49–60 (2005)

11. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-
anonymity. In: ICDE (2006)

12. Kai-cheng, L., Hua-ming, L.: Combinational Mathematics, 3rd edn. pp. 179–184.
Tsinghua University Press, Beijing (in Chinese) (2002)

13. Machanavajjhala, A., Gehrke, J., Kifer, D.: l-diversity: Privacy beyond k-
anonymity. In: ICDE (2006)

14. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: PODS.
Proc. Of the 23rd ACM Symposium on Principles of Database Systems, pp. 223–
228 (2004)

15. Orlov, M.: Efficient Generation of Set Partitions (2002), http://www.informatik.
uni-ulm.de/ni/Lehre/WS03/DMM/Software/partitions.pdf

16. Samarati, P.: Protecting respondents’ identities in microdata releas. IEEE
TKDE 13(6), 1010–1027 (2001)

17. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. SRI Tech-
nical Report SRI-CSL-98-04 (1998)

18. Sweeney, L.: K-anonymity: A model for protecting privacy. International Journal
on Uncertainty, Fuzziness, and Knowledge-based Systems 10(5), 557–570 (2002)

19. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and
suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems 10(5), 571–588 (2002)

http://www.informatik.uni-ulm.de/ni/Lehre/WS03/DMM/Software/partitions.pdf
http://www.informatik.uni-ulm.de/ni/Lehre/WS03/DMM/Software/partitions.pdf

358 S. Xu and X. Ye

20. Wang, K., Fung, B.C.M.: Anonymizing sequential releases. In: KDD. Proc. of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Philadelphia, PA, pp. 414–423 (2006)

21. Wang, K., Yu, P.S., Chakraborty, S.: Bottom-up generalization: A data mining
solution to privacy protection. In: ICDM, pp. 249–256 (2004)

22. Willenborg, L.C.R.J., de Waal, T.: Elements of Statistical isclosure Disclosure Con-
trol. Lecture Notes in Statistics. Springer, New York (2000)

23. Xiao, X., Tao, Y.: Personalized Privacy Preservation. In: Proc. of the SIGMOD,
Chicago, Illinois, USA, June 27-29, 2006 (2006)

24. Xiao-chun, Y., Xiang-yu, L., Bin, W., Ge, Y.: K-Anonymization Approaches for
Supporting Multiple Constraints. Journal of Software 17(5), 1222–1231 (2006),
http://www.jos.org.cn/1000-9825/17/1222.htm

25. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult

http://www.jos.org.cn/1000-9825/17/1222.htm
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 359 – 370, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimizing Quality Levels and Development Costs for
Developing an Integrated Information Security System*

Myeonggil Choi and Sangmun Shin

Department of Systems Management Engineering, INJE University, 607 Obang-dong, Gimhae,
Gyeongnam, 621-749, Korea

{mgchoi,sshin}@inje.ac.kr

Abstract. Increased Internet threats make many kinds of information security
systems performing various functions, which can often be combined into func-
tions of an integrated information security system. To load various functions to
an integration information system, much development resources should be in-
vested to a development life cycles. The constraints of development resources
force developers not to achieve a balanced quality of the system. To attain the
specified quality of the system within the given development resources, the
relative weights among quality factors of the system on a development life
cycle should be measured and a balance between the levels of quality and de-
velopment costs should be optimized, simultaneously. This paper suggests the
relative weights of the quality factors influencing operations of the system, and
shows an optimal solution for the quality levels and development costs using
desirability function (DF). For optimization, this paper employs AHP as multi-
ple criteria decision making (MCDM) technique and DF.

1 Introduction

Rapid growing Internet threats force organizations to deploy many kinds of informa-
tion security systems, which perform various functions from detecting penetration to
encrypting communication channels. A burden of purchasing costs and a discomfort
management make the various functions of many kinds of information security sys-
tems transformed to functions of an integrated information security system in the
industry world [7,8]. An integrated information security system can perform functions
of firewall, intrusion detection, intrusion prevention, virus vaccine and virtual packet
networks (VPN) systems. Currently, many integrated information security systems are
adopted in Korea government and related institutions [9]. Deploying various security
functions to an integrated information security system demands that many quality
factors should be balanced on a development life cycle within the given resources.
Constraints of development resources make developers focus mainly on developing
functions of the system. Therefore, other quality factors on a development life cycle,
which could be often less attracted than those of functionality, could cause the system
to frequently halt and malfunction [7]. The failure of distributing development
resources to overall quality factors makes organizations exposed to Internet threats.

* This work was supported by the 2006 Inje University research grant.

360 M. Choi and S. Shin

To solve this problem, two kinds of approaches should be considered, simultane-
ously. First, the relative weights among the quality factors of the system should be
measured by comparing the importance of the quality factors. The quality factors,
which can influence the operation of an integrated information security system, could
be regarded as reliability, usability, maintainability and functionality. Second, an
optimal solution with consideration of tradeoff between the quality levels and devel-
opment costs should be suggested by calculating the relative weights of quality
factors using desirability function (DF). To solve the tradeoff, developers who charge
in an integrated information security system usually distribute development costs with
their experience.

This paper suggests the relative weights of the quality factors influencing opera-
tions of the system, and shows an optimal solution associated with the levels of
quality and development costs using DF. This paper employs analytic hierarchy proc-
ess (AHP) as multiple criteria decision making (MCDM) to decide the relative
weights of the quality factors on a development life cycle, and DF to optimize the
levels of the system quality and development costs. To illustrate the proposed
approach, we use ISEM (High Secure Engineering Methodology), which has been
created in a Korea security research institution and has been used to develop inte-
grated information security systems.

2 Measuring the Relative Weights of Quality Factors

To obtain highly qualitative information security systems, the security engineering
methodologies such as CC, ITSEC, SSE-CMM, SPICE have been introduce. The
security engineering methodologies could be divided into two approaches in terms of
assuring objects. The first approach is a product assurance approach and the second
approach is a production process approach. The product assurance approach focuses
the assurance of products through evaluating functions and assurances of information
security systems. CC (Common Criteria), ITSEC (Information Technology Security
Evaluation Criteria) and TCSEC (Trusted Computer Security Evaluation Criteria)
could be included in the product assurance approach. Although the product assurance
approach could assure high quality, it takes high costs and periods. The production
process approach focuses the assurance of production process. The production process
approach shifts its focus from assuring products to assuring production processes.
SSE-CMM (System Security Engineering-Capability Mature Model), SPICE, ISO
9000-3 (Guidelines for the development supply and maintenance of software) could
be included in the production process approach. Although the costs and periods of the
production process approach are lower than those of the product assurance approach,
the assurance level should have been lower than that of the first approach. The prod-
uct assurance approach has been frequently introduced in developing high reliable
information [12,13,16].

A security research institution in Korea has tried to solve a trade-off between costs
and quality. The institute in Korea has created ISEM assuring both products and pro-
duction process. ISEM could make up for shortcomings of the product assurance

 Optimizing Quality Levels and Development Costs 361

Note of

Technical Survey

Note of

Technical SurveyUser RequirementUser Requirement

Specification of

Target System

Specification of

Target System Conceptual DesignConceptual Design 1st Assurance

Evaluation

1st Assurance

Evaluation

Security Mechanism

Design

Security Mechanism

Design

12

4 53

1st process

1st Prototype

Specification

Security Mechanism

Design

Functional Test
2nd Assurance

Evaluation

Development of

1st Prototype

12

4

3

2nd process

3rd process

3rd Prototype

Specification

3rd Prototype

Specification

Environmental TestEnvironmental Test

Development of

3rd Prototype

Development of

3rd Prototype

12

4

3

Performance TestPerformance Test

Operational TestOperational Test 4th Assurance

Evaluation

4th Assurance

Evaluation5

Note of

Technical Survey

Note of

Technical SurveyUser RequirementUser Requirement

Specification of

Target System

Specification of

Target System Conceptual DesignConceptual Design 1st Assurance

Evaluation

1st Assurance

Evaluation

Security Mechanism

Design

Security Mechanism

Design

12

4 53

1st process

1st Prototype

Specification

Security Mechanism

Design

Functional Test
2nd Assurance

Evaluation

Development of

1st Prototype

12

4

3

2nd process

3rd process

3rd Prototype

Specification

3rd Prototype

Specification

Environmental TestEnvironmental Test

Development of

3rd Prototype

Development of

3rd Prototype

12

4

3

Performance TestPerformance Test

Operational TestOperational Test 4th Assurance

Evaluation

4th Assurance

Evaluation5

Fig. 1. The development life cycle of ISEM

approach and could reflect the advantages of the production process approach [12]. In
this paper, we assume ISEM for the purpose of deciding the relative weights of
quality factors on the development life cycle. ISEM has also been applied to develop
integrated information security systems. As fig.1 shows, ISEM consists of 3 devel-
opmental processes, which are the 1st process (design process), the 2nd process (proto-
types development process), and the 3rd process (test process).

To apply quality factors to ISEM, we select quality factors from ISO/IEC 9126
characteristics of software quality [2,10]. To select appropriate characteristics of
software quality as quality factors, we formed a focus group, which consists of 4
researchers, 3 developers and 3 faculties. The members of the focus group have
experience in developing information security systems. We asked the focus group to
select the appropriate software quality characteristics as scales to measure the relative
weights among quality factors in developing an integrated information system. As
table 1 shows, they select 4 quality factors and 13 quality sub-factors as criteria to
measure relative weights among qualities of an integrated information security sys-
tem. The quality factors and quality sub-factors identified through the survey were
used as input of AHP.

Table 1. Quality factors and sub-factors used in AHP technique

Factors Sub-factors
Functionality suitability, accuracy, interoperability, security

Reliability maturity, fault tolerance, recoverability
Usability understandability, operability

Maintainability analyzability, changeability, stability, testability

362 M. Choi and S. Shin

To measure the relative weights of the quality factors influencing quality of an inte-
grated information security system on the development life cycle, we conduct AHP as
MCDM. AHP helps to set priorities and to make the best decision when both qualitative
and quantitative aspects of a decision need to be considered. It serves as a framework
for decision maker to structure complex decision problems and to provide judgments
based on knowledge, experience [14]. We prepare a questionnaire based on the hier-
archy of the quality factors and the quality sub-factors. In the questionnaire, pairwise
comparisons are made between all the factors at each level in the hierarchy. The pair-
wise comparison process elicits qualitative judgmental statements that indicate the
strength of the decision maker’s preference in a particular comparison. Saaty suggests
the use of a 1-9 scale to quantify the strength of decision maker’s feeling between any
two alternatives with respect to a given attribute [14]. An explanation of this scale is
presented in table 2. We send 20 questionnaires to developers and evaluators, who
have participated in developing and evaluating integrated information security sys-
tems. We asked them to assign weight values to the each quality factors and sub-
factors on the development life cycle of ISEM. The number of returned questionnaire
is 11 and the return rate is 55 %.

Table 2. Scale used for pairwise comparison

Intensity
of

importance
Definition Explanation

1
Equal importance Both factors contribute equally to the

objective or criteria

3
Weak importance of

one over another
Experience and judgment slightly favor

one factor over another

5
Essential or strong

importance
Experience and judgment strongly favor

one factor over another

7
Very strong or

demonstrated importance

A factor is flavored very strongly over
another, its dominance demonstrated in

practice

9 Absolute importance
The evidence favoring one factor over

another is unquestionable

Table 3 shows results of AHP evaluation analysis, which shows the weights of the

quality factors. The weights of the quality factors could be applied to develop an inte-
grated information system on the life cycle. In AHP technique, Geometric Consis-
tency Index (GCI) is calculated for the verification of the result of AHP. When the
value of GCI is less than 0.3526, 0.3147 (n=4, n=3, CR=0.1), respectively, the evalua-
tion of experts can be considered meaningful [11]. As the values of GCI of the AHP
are under 0.3526, 0.2147(n=3, n= 4, CR=0.1), the results of evaluation could be seen
as meaningful.

 Optimizing Quality Levels and Development Costs 363

Table 3. Results of AHP evaluation analysis

1st process 2nd process 3rd process Quality
factors

Quality
Sub-factors global

weight
ra
nk

global
weight

ra
nk

global
weight

ra
nk

Suitability 0.1670 2 0.1386 2 0.0392 12
Accuracy 0.0716 6 0.1689 1 0.0346 13

interoperability 0.0799 4 0.1168 3 0.0505 9
Functionali

ty
Security 0.0793 5 0.0843 5 0.0439 10
Maturity 0.0993 3 0.0746 7 0.1018 3

fault tolerance 0.0672 9 0.0590 9 0.1359 2 reliability
recoverability 0.0732 8 0.0644 8 0.0885 7

understandabilit
y

0.1968 1 0.1152 4 0.1580 1
usability

Operability 0.0793 7 0.0765 6 0.0888 5
analyzability 0.0265 10 0.0269 10 0.0418 11
changeability 0.0212 11 0.0254 12 0.0563 8

Stability 0.0195 12 0.0201 13 0.0979 4
Maintainab

ility
Testability 0.0193 13 0.0293 11 0.0866 6

In the 1st process, the ranks of understandability, suitability, maturity, interopera-

bility and security are the 1st, the 2nd, the 3rd, the 4th, and 5th, respectively. In the 2nd
process, accuracy, suitability, interoperability, understandability, and security rank the
1st, the 2nd , the 3rd, the 4th, and 5th,.respectively. In the 3rd process, understandabil-
ity,fault tolerance, maturity, stability, and operability rank the 1st, the 2nd , the 3rd, the
4th, and 5th,.respectively. Although the ranks of each quality sub-factor in each process
are different, understandability, suitability, maturity, interoperability and security are
regarded as important quality sub-factors. The weights of the quality sub-factors
could be used as a key scale to distribute the development resources for developing an
integrated information security system on a development life cycle. Developers,
who are in charge of developing integrated information security systems, can control
quality of the systems, referring the weights.

3 Optimizing the Levels of Quality and Development Costs on
ISEM

When an integrated information security system is developed, there exists a tradeoff
between two primary objectives (i.e., the levels of a system quality and its associated
development costs) in real industrial situations [4,6]. A high level of development
resource in developing an integrated information security system usually incurs a high
development cost. To achieve a specific quality factor of an integrated information
security system, a high level of the development resource should be assigned to
the quality factors. On the other hand, a low level of the development resource re-
duces a cost in developing an integrated information security system, resulting to the

364 M. Choi and S. Shin

considerably lower quality level of the system. Thus, determining the level of the
development resource involves a tradeoff between the levels of the system quality and
the development costs.

In order to facilitate the economic tradeoff, researchers typically express quality in
monetary terms using a quality function. One of the most applicable methods to the
development of the system is a DF approach that is first introduced by Harrington [5].
This DF approach could be explained as following. If the preference of a decision-
maker can be assessed, the optimal solution to a multi-objective problem can be found
by maximizing the preference function. Once relevant information is received from
the developer, the preference structure can be expressed as a functional form. How-
ever, it is usually very difficult to obtain an exact representation of the preference
function. In this paper, the preference function for the quality factors, called DFs, are
obtained by AHP discussed in the previous chapter.

For the cost-effective development, the DF approach can be used to optimize the
two objectives (i.e., the levels of the system quality and costs of developing an
integrated information security system) as an approximate representation of the pref-
erence, resulting to deciding the levels of the system quality considering development
costs. Any quality levels of a development resource can be mapped onto DF, which
ranges from zero to one. A zero-level of desirability implies that the quality level may
not be acceptable, while one-level of desirability can be considered as the satisfactory
quality level. Thus, the DF can be obtained by transforming a quality level into a
desirability value. This is one of the most useful approaches for optimizing multiple
objectives in order to use the simultaneous optimization technique [15].

The primary objective of using DF is to find the optimal level of a development
resource in order to maximize overall desirability. DF is modified by Derringer and
Suich [3], Borror [1], and Shin [15] proposed the optimization model using DF as
follows:

Maximize m
mdddD

1

21)(⋅= =
m

1
m

1i
id ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∏

=

 (1)

Subject to 1d0 ≤≤ i

where D and m represent the overall desirability which are the geometric mean of the
number of the quality levels. Individual desirability di represents the desirability of
achieving the goal set for particular the quality level, which is defined by fig. 2. If any
of the individual quality factors is completely undesirable, then the overall desirability
is also completely undesirable. Similarly, the overall desirability is 1 if and only if all
of the individual quality factors are completely desirable. The optimal operating con-
ditions are chosen to maximize the overall desirability () mmdddD

1
21 ⋅⋅⋅⋅⋅⋅= with m

quality levels. There are two different types of DF defined by characteristics: smaller-
the-better (S-type) that is associated with the quality factors and larger-the-better (L-
type) that is associated with the costs. Fig. 2 provides these two types of DFs and their
graphical views.

 Optimizing Quality Levels and Development Costs 365

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

>

≤≤⎟
⎠
⎞

⎜
⎝
⎛

−
−

<

=

HLE

HLELLE
LLEHLE

HLE

LLE
PW

P

y0

y
y

y1

d

HLELLE

Smaller-the-better type of DF

pd

d

1<pw

1=pw

1>pw

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

>

≤≤⎟
⎠
⎞

⎜
⎝
⎛

−
−

<

=

HLE

HLELLE
LLEHLE

HLE

LLE
CW

C

y1

y
y

y0

d

HLELLE

Larger-the-better type of DF

Cd

d

1<cw

1=cw
1>cw

Fig. 2. Two types of DF(S and L type)

where LLE, HLE, dp, and dc are denoted by the lowest level of the resource in devel-
oping an integrated information security system, the highest level of the resource in
developing an integrated information security system, the system quality levels and
development costs of an integrated information security system, respectively. Super-
scripts, wp and wc, are denoted by the weights based on the AHP results to accommo-
date the nonlinear effect of a preference and cost structures, respectively. If the values
are set to one, the desirability functions are linear.

Table 4 shows a process to transform the global weights of sub-factors in AHP to
superscripts in a DF approach. We could calculate 0.0769, 0.0193, and 0.1968 as
average, minimum, maximum of global weight, respectively. To get transformed
superscripts, we establish 1, 100, and 0.01 as average, minimum, maximum in a DF
approach, respectively.

In table 4, Min AHP [Wyi] (2) could be obtained through comparing the values of
AHP [Wyi] (1) with the average of AHP [Wyi] (8). If the values of AHP [Wyi] are
greater than the average of AHP [Wyi] (0.0769), 0.0769 could be assigned to (2). On
the other hand, if the values of AHP [Wyi] are smaller than the average of AHP [Wyi],
the minimum of AHP [Wyi] (0.0193) could be assigned to the values of MIN AHP
[Wyi]. Max AHP [Wyi] (3) could be obtained as MIN AHP [Wyi]. If AHP [Wyi] is
greater than 0.0769, 0.1968 could be assigned to the values of MAX AHP [Wyi]. On
the other hand, if AHP [Wyi] is smaller than 0.0769, 0.0769 could be assigned to the
values of MAX AHP [Wyi].

366 M. Choi and S. Shin

Table 4. DF quality weights of the 1st process

Sub-factors
(Yi)

AHP
[Wyi]
(1)

Min
AHP
[Wyi]
(2)

Max
AHP
[Wyi]
(3)

Min
[Wyi]
DF
(4)

Max
[Wyi]
DF
(5)

Transf
ormed
[Wyi]

(6)

suitability 0.1670 0.0769 0.1968 1 100 75.434
accuracy 0.0716 0.0193 0.0769 0.01 1 0.9078

interoperability 0.0799 0.0769 0.1968 1 100 3.4928
security 0.0793 0.0769 0.1968 1 100 2.9759
maturity 0.0993 0.0769 0.1968 1 100 19.457

fault tolerance 0.0672 0.0193 0.0769 0.01 1 0.8329
recoverability 0.0731 0.0193 0.0769 0.01 1 0.9352

understandability 0.1967 0.0769 0.1968 1 100 100
operability 0.0792 0.0769 0.1968 1 100 2.9280

analyzability 0.0264 0.0193 0.0769 0.01 1 0.1328
changeability 0.0211 0.0193 0.0769 0.01 1 0.0414

stability 0.0194 0.0193 0.0769 0.01 1 0.0125
testability 0.0193 0.0193 0.0769 0.01 1 0.0100

Min (7) 0.0193 Average(8) 0.0769 Max (9) 0.1968

Min [Wyi] DF (4) could be obtained through assigning the average of DF (8),

and the minimum of DF (7). If the values of (2) are 0.0193, then 0.01(the mini-
mum of DF) could be assigned. On the other hand, if the values of (2) are 0.0769,
1 (the average of DF) could be assigned. Max [Wyi] DF (5) could be obtained as
Min [Wyi] DF. If the values of (3) are 0.1968, then 100 (the maximum of DF) could
be assigned. On the other hand, if the values of (3) are 0.0769, 1 (the average of
DF) could be assigned.

Finally, transformed weights for utilizing desirability function can be calculated
by

()()
()][][

][][][][
][

ii

iiii

i

yy

DFyDFyyy
DFiyT WAHPMinWAHPMax

WMinWMaxWAHPWAHPMax
WMaxW

−
−−

−= (2)

As table 4 shows, the quality levels of understandability should be increased to
100, suitability 75.434, maturity 19.457, interoperability 3.4928, security 2.9759, and
operability 2.9280. The levels of the quality sub-factors, which can be considered as
important in the table 4, appropriately represent the nature of the 1st development
process. In the 1st process of ISEM, user requirement analysis and conceptual design
are stressed. For complete user requirement analysis and conceptual design of an
integrated information system, the quality sub-factors, which are understandability,
suitability, maturity, interoperability, security, and operability, should be naturally
stressed as table 4 shows. The prototype in the 2nd process should reflect the user
requirements and conceptual design and can operate in a secure way. As table 5

 Optimizing Quality Levels and Development Costs 367

shows, the high levels of the quality sub-factors such as accuracy, operability, and
security can reflect the nature of the 2nd process. In 3rd process which mainly focuses
on the test of the 2nd prototype, the quality sub-factors such as fault-tolerance, stabil-
ity, maturity, and recoverability could be considered important. The results of the DF
approach, therefore, well reflect the different purposes of each development process.

Table 5. DF quality weights of the 2nd and 3rd process

Process 2nd Process 3rd Process

Sub-factors
(Yi)

Min
[Wyi]
DF

Max
[Wyi]
DF

Trans
formd
[Wyi]

Min
[Wyi]
DF

Max
[Wyi]
DF

Trans
formed

[Wyi]

suitability 1 100 67.434 0.01 1 0.1175

accuracy 1 100 100 0.01 1 0.0100
interoperability 1 100 43.978 0.01 1 0.3827

security 1 100 8.9235 0.01 1 0.2269
maturity 0.01 1 0.9597 1 100 31.341

fault tolerance 0.01 1 0.6885 1 100 73.036
recoverability 0.01 1 0.7811 1 100 15.104

understandability 1 100 42.164 1 100 100
operability 0.01 1 0.9931 1 100 15.498

analyzability 0.01 1 0.1278 0.01 1 0.1794
changeability 0.01 1 0.1030 0.01 1 0.5181

stability 0.01 1 0.0100 1 100 26.677
testability 0.01 1 0.1703 1 100 12.769

2nd Process MIN 0.0193 AVG 0.0769 MAX 0.1968

3rd Process MIN 0.0020 AVG 0.0769 MAX 0.1689

Fig. 3. Desirability functions for the quality levels and development cost on the 1st process

368 M. Choi and S. Shin

Fig. 4. Desirability functions for the quality levels and development cost on the 2nd process

Fig. 5. Desirability functions for the quality levels and development cost on the 3rd process

We can optimize the levels of system quality and development costs using DFs. As
shown in Figs. 3, 4, and 5, different DFs can be obtained because different weights
are assigned to the quality sub-factors based on the results of AHP while assuming an
equal weight for development costs. The optimal solution for the level of the each
quality sub-factor and its associated development cost can be obtained at the cross
points of Quality DFs and Cost DF. At the cross points, developers can assign an
optimal development resource to the each quality sub-factor.

4 Conclusion

Many organizations deploy integrated information security systems to protect their
information resources. The failure of an effective distribution of development re-
sources to the quality factors on a development life cycle could make the systems

 Optimizing Quality Levels and Development Costs 369

frequently half and malfunction. To solve this problem, this paper suggested the
weight values of quality factors as criteria, which direct developers to distribute de-
velopment resources on a development life cycle and try to optimize the quality levels
and development costs based on the DF approach.

To identify the quality factors influencing the quality of an integrated information
security system on the development life cycle, we surveyed an opinion of a focus
group. Based on the quality factors identified through the survey, we conducted AHP
and found the relative weights of the quality factors on the development life cycle of
ISEM. With the results of AHP, we obtained transformed weights of the quality fac-
tors. Finally, we elicited an optimal solution for the levels of the system quality and
development costs.

An optimal solution provides a guidance to invest an amount of development re-
source to each quality factor in consideration of development costs. The relative qual-
ity weights and transformed weights used in the DF approach could be used to solve
the tradeoff between the levels of the system quality and development costs when an
organization tries to develop an integrated information security system. In this paper,
we assume a fixed development costs to utilize the DF approach. The approach, sug-
gested in this paper, could be applied to manage the quality levels and development
costs in developing other information security systems. The development costs could
be different in each organization. To overcome shortcomings of our research, we need
to obtain transformed weights of development costs with the DF approach as the lev-
els of the calculated system quality

References

1. Borror, C.M.: Mean and Variance Modeling with Qualitative Responses: A Case Study.
Quality Engineering 11(1), 141–148 (1998)

2. Côté, et al.: The evolution Path for Industrial Software Quality Evaluation Methods Apply-
ing ISO/IEC 9126: 2001 Quality Model: 2001 Quality Model: Example of MITRE’s
SQAE Method. Software Quality Journal 13, 17–39 (2005)

3. Derringer, G.C., Suich, R.: Simultaneous Optimization of Several Response Variables.
Journal of Quality Technology 12, 214–219 (1980)

4. Eloff, M., Solms, S.H.: Information Security Management, Hierarchical Framework for
Various Approaches. Computers & Security 19, 243–256 (2000)

5. Harrington Jr., E.C.: The Desirability Function. Industrial Quality Control 21, 494–498
(1965)

6. Hefner, R., Monroe, W.: System Security Engineering Capability Maturity Model. In:
Conference on Software Process Improvement (1997)

7. http://www.itstv.net/broad/news_list.asp?opt=contents&wrd=&page=2&status=list
8. http://www.3com.com/en_US/jump_page/embedded_firewall.html
9. The list of certified products http://www.ncsc.go.kr/

10. ISO/IEC: Software Engineering-Product Quality-Part1: Quality Model (2001)
11. Aguarón, J., et al.: The Geometric Consistency Index: Approximated threshold. European

Journal of Operation Research Wood, C. and Snow, K.: ISO 9000 and information, Secu-
rity, Computer & Security 147(1), 137–145 (2003)

370 M. Choi and S. Shin

12. Choi, M., et al.: An Empirical Study of Quality and Cost Based Security Engineering. In:
Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC 2006. LNCS, vol. 3903, Springer, Hei-
delberg (2006)

13. Varnovsky, N.P., Zakharov, V.A.: On the Possibility of Provably Secure Obfuscating Pro-
grams. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 91–102.
Springer, Heidelberg (2004)

14. Satty, T.L.: Decision Making for Leaders: The Analytical Hierarchy Process for Decision
in a Complex World. RWS Publications (1995)

15. Shin, S.M., Cho, B.R.: Trade-off Studies on Process Parameters: A Robust Design Per-
spective. In: The 11th Industrial Engineering Research Conference, Orlando, FL (2002)

16. Wood, C., Snow, K.: ISO 9000 and information. Security, Computer & Security 14(4),
287–288 (1995)

S. Kim, M. Yung, and H.-W. Lee (Eds.): WISA 2007, LNCS 4867, pp. 371–386, 2007.
© Springer-Verlag Berlin Heidelberg 2007

ICRep: An Incentive Compatible Reputation Mechanism
for P2P Systems*

Junsheng Chang, Huaimin Wang, Gang Yin, and Yangbin Tang

School of Computer, National University of Defense Technology,
HuNan Changsha 410073, China

cjs7908@163.com

Abstract. In peer-to-peer (P2P) systems, peers often must interact with
unknown or unfamiliar peers without the benefit of trusted third parties or
authorities to mediate the interactions. Trust management through reputation
mechanism to facilitate such interactions is recognized as an important element
of P2P systems. It is, however, faced by the problems of how to stimulate
reputation information sharing and honest recommendation elicitation. This
paper presents ICRep − an incentive compatible reputation mechanism for P2P
systems. ICRep has two unique features: (i) a recommender’s credibility and
level of confidence about the recommendation is considered in order to achieve
a more accurate calculation of reputations and fair evaluation of
recommendations. (ii) Incentive for participation and honest recommendation is
implemented through a fair differential service mechanism. It relies on peer's
level of participation and on the recommendation credibility. Theoretic analysis
and simulation show that ICRep can help peers effectively detect dishonest
recommendations in a variety of scenarios where more complex malicious
strategies are introduced. Moreover, it can also stimulate peers to send
sufficiently honest recommendations.

1 Introduction

P2P (Peer-to-Peer) technology has been widely used in file-sharing applications,
distributed computing, e-market and information management [1]. The open and
dynamic nature of the peer-to-peer networks is both beneficial and harmful to the
working of the system. Problems such as free-riders and malicious users could lead to
serious problems in the correct and useful functioning of the system. As shown by
existing work, such as [2, 3, 4, 5, 6, 7], reputation-based trust management systems
can successfully minimize the potential damages to a system by computing the
trustworthiness of a certain peer from that peer’s behavior history.

However, the design of a reputation mechanism is faced by a number of
challenges, including: (i) the under-participation problem, i.e., peers do not share
reputation information with peers. There are multiple reasons for peers to be reluctant
to report evaluations or to do so honestly [8], peers may be reluctant to give positive

* Supported by National Basic Research Program of china under Grand (No.2005CB321800),

National Natural Science Foundation of China under Grant (No.90412011, 60625203) and
National High-Tech Research and Development Plan of China under Grant (2005AA112030).

372 J. Chang et al.

recommendations because they lift the reputation of the trustees, which are potential
competitors; peers may be afraid of retaliation for negative feedbacks; last but not
least, the (truthful) recommendations only benefit others; and (ii) the honest
elicitation problem, i.e., peers may report false reputation information. A malicious
peer may submit dishonest recommendations in order to boost the ratings of other
malicious peers or bad-mouth non-malicious peers. The situation is made much worse
when a group of malicious peers make collusive attempts to manipulate the ratings [9,
10]. The two above issues pose obstacles for designing a reputation mechanism that is
capable of recognizing the real trustworthiness of a peer. Thus, it is necessary to
consider how to make a reputation mechanism incentive-compatible, i.e. how to
ensure that it is in the best interest of a rational peer to report reputation information
truthfully and actively [8].

With these issues in mind, we present ICRep: an incentive compatible reputation
mechanism for P2P systems. Within this system a peer can reason about
trustworthiness of other peers based on the available local information which includes
past interactions and recommendations received from others. Peers collaborate to
establish trust among each other without using a priori information or a trusted third
party. Our contributions include: (1) When evaluating a recommendation,
recommender’s trustworthiness and confidence about the information provided are
considered. (2) Incentive for participation and honest recommendation is
implemented through a fair differential service mechanism. (3) To assess the
effectiveness of our approach, we have conducted extensive analytical and
experimental evaluations. As a result, ICRep can help peers effectively detect
dishonest recommendations in a variety of scenarios where more complex malicious
strategies are introduced. Moreover, it can also stimulate peers to send sufficiently
honest recommendations.

The reminder of this paper is structured as follows. In the second section, the
related works are introduced; ICRep will be illuminated in the third section; and in the
fourth section, a simulation about this reputation mechanism is laid out. Conclusions
and future works are in the end.

2 Related Work

In this section, we first survey existing reputation mechanisms for P2P system,
especially focusing on their handing of recommendations, then give an overview on
truthtelling mechanisms that are not specific to P2P systems concludes.

Measures Against Dishonest Feedback in P2P Systems. Effective protection
against unfair ratings is a basic requirement in order for a reputation system to be
robust. The methods of avoiding bias from unfair ratings can broadly be grouped into
two categories, endogenous and exogenous [11], as described below.

1. Endogenous Discounting of Unfair Ratings. This category covers methods that
exclude or give low weight to presumed unfair ratings based on analysing and
comparing the rating values themselves. The assumption is that unfair ratings can be
recognised by their statistical properties only. Proposals in this category include
Dellarocas [12] and Chen & Singh [13]. The implicit assumption underlying
endogenous approaches is that the majority of recommendations are honest such that

 ICRep: An Incentive Compatible Reputation Mechanism for P2P Systems 373

they dominate the lies. Therefore, a recommendation that deviates from the majority
is considered a lie. This assumption is not solid in open environments where
recommendations can be very few in number, most of which can be untruthful.

2. Exogenous Discounting of Unfair Ratings. This category covers methods where
external factors, such as recommendation credibility, are used to determine the weight
given to ratings. In order to calculate the recommendation credibility, PeerTrust [5]
proposes to use a personalized similarity measure (PSM for short) to rate the
recommendation credibility of another node x through node n's personalized
experience, the evaluation of recommendation credibility is depending on the
common set of peers that have interacted with requestor and the recommendatory
peers. As the increase of peers’ quantity, the common set is always very small [14].
Eigentrust [3] considers the recommendation credibility as being equal to the service
trust. This metric is not suitable in circumstances where a peer may maintain a good
reputation by providing high quality services but send malicious feedbacks to its
competitors. Research [21] presents a new recommendation credibility calculation
model, but there exists unfairness to blameless peers. Research [6] proposes the
weighted majority algorithm (WMA), the main idea is to assign and tune the weights
so that the relative weight assigned to the successful advisors is increased and the
relative weight assigned to the unsuccessful advisors is decreased. But, the
approaches mentioned above don’t consider more complex malicious strategies, for
example, peers could try to gain trust from others by telling the truth over a sustained
period of time and only then start lying, colluding peers could inflate reputation using
unfair ratings flooding. Moreover, a peer may be penalized for an incorrect opinion
that was based on a small number of interactions and/or a large variation in
experience. Then, honest peers will be falsely classified as lying.

Truthtelling Mechanisms. In order to stimulate reputation information sharing and
honest recommendation elicitation, Jurca and Faltings [8] propose an incentive
compatible reputation mechanism to deal with inactivity and lies. A client buys a
recommendation about a service provider from a special broker named R-nodes. After
interacting with the provider, the client can sell its feedback to the same R-node, but
gets paid only if its report coincides with the next client’s report about the same
service provider. One issue is that if the recommendation from an R-node is negative
such that a client decides to avoid the service provider, the client will not have any
feedback to sell. Or in the existence of opportunistic service providers that, for
example, behave and misbehave alternatively, an honest feedback does not ensure
payback. This opens up the possibility of an honest entity to have negative revenue
and thus is unable to buy any recommendation. Besides, the effectiveness of their
work depends largely on the integrity of R-nodes, which is assumed to be trusted a
priori. To encourage the exchange of reputation information, Pinocchio [16] rewards
participants that advertise their experience to others and uses a probabilistic honesty
metric to detect dishonest users and deprive them of the rewards. The reward can be
used to query the reputation of others. Pinocchio does not intend to protect against
conspiracies or bad-mouthing. Research [17] proposes a mechanism for providing the
incentives for reporting truthful feedback in a P2P system for exchanging services.
Under their approach, both transacting peers submit ratings on performance of their
mutual transaction. If these are in disagreement, then both transacting peers are
punished, since such an occasion is a sign that one of them is lying. The severity of

374 J. Chang et al.

each peer’s punishment is determined by his corresponding non-credibility metric;
this is maintained by the mechanism and evolves according to the peer’s record. But
their proposal still avoids the fundamental problem that peers have no incentive to
provide reputation feedback. Even peer can provide feedback, but, obviously,
malicious peers may collude to weaken the mechanism (two colluding peers can
provide the consistent rating for each other to increase their reputation value.). In
contrast to these works, we propose a fully distributed mechanism based on local
knowledge that provides malicious and non-participating entities an incentive for
participation and honest behavior.

3 Incentive-Compatible Reputation Mechanism

We adopt the terminology witness to denote a peer solicited for providing its
recommendation. Finding the right set of witnesses is a challenging problem since the
reputation value depends on their recommendations. Our approach for collecting
recommendations follows the solution proposed by Yu et al [6], in which
recommendations are collected by constructing chains of referrals through which
peers help one another to find witnesses. In order to stimulate peers to send
sufficiently honest recommendations, we make some changes (see Sect. 3.3 for
details).

In this section, we first introduce our trust valuation algorithm used by a peer to
reason about trustworthiness of other peers based on the available local information
which includes past interactions and recommendations received from witnesses. Then,
we present our recommendation credibility calculation model, which can effectively
detect dishonest recommendations in a variety of scenarios where more complex
malicious strategies are introduced. Last, a simple yet effective trust information
exchange protocol is proposed to stimulate sufficiently honest recommendations.

3.1 Trust Evaluation Algorithm

In respect that peers may change their behaviors over time, and the earlier ratings may
have little impact on the calculation result, it is desirable to consider more recent
ratings, that is, to consider only the most recent ratings, and discard those previous
ones. Such a restriction is motivated by game theoretic results and empirical studies
on ebay that show that only recent ratings are meaningful [15]. Thus, in the following,
only interactions that occur within a sliding window of width D are considered.
Moreover, by doing so, the storage costs of our reputation system are reasonable and
justified given its significant benefits.

There are two kinds of trust relationships among peers, namely, direct trust and
indirect trust [19]. The direct trust of peer i to peer j can be evaluated from the direct
transaction feedback information between i and j. The indirect trust of i to j can be
computed according to the recommendations of peers who have interacted with j. The
overall trust of peer i to peer j is produced by combining these two trust value.

Direct Trust. Any peer in our system will maintain a direct trust table for all the other
peers it has interactions with directly. Suppose peer i has some interactions with
peer j during the last D time units, the entry for peer j is denoted as

 ICRep: An Incentive Compatible Reputation Mechanism for P2P Systems 375

(,) , _Exp i j n E XP L IST= , where n is the number of ratings, and

_E X P L IS T is an index in which these ratings are kept. The rating is in the form of

r = (i, j, t, v). Here i and j are the peers that participated in interaction, and v is the
rating peer i gave peer j. The range of v is [0, 1], where 0 and 1 means absolutely
negative, absolutely positive respectively. t is the time stamp of the interaction. A
rating is deleted from the direct trust table after an expiry period D.

From the direct trust table, the direct trust valuation of peer i to peer j at time t is
represented as < t

ijD , t
ijρ >, where t

ijD is the direct trust value and t
ijρ is introduced

to express the level of confidence about this direct trust value. Although there are a lot
of elements that can be taken into account to calculate the level of confidence, we will
focus on two of them: the number of experiences used to calculate the direct trust
value and the variability of its rating values. t

ijD is calculated by the following

formula:

()

()

.

e (,). _

.

e (,). _

e . t e t

Exp i j EXP LISTt
ij t e t

Exp i j EXP LIST

v
D

α

α

−
∈

−
∈

∗
=
∑
∑

 (1)

Where e.v is the value of the rating e, and α is the decay factor in the range of (0, 1).
A malicious node may strategically alter its behavior in a way that benefits itself such
as starting to behave maliciously after it attains a high reputation. In order to cope
with strategic altering behavior, the effect of an interaction on trust calculation must
fade as new interactions happen [10]. This makes a peer to behave consistently. So, a
peer with large number of good interactions can not disguise failures in future
interactions for a long period of time.

Let t
ijCIN be the level of confidence based on the number of ratings that have

been taken into account in computing t
ijD . As the number of these ratings

((,) .E x p i j n) grows, the level of confidence increases until it reaches a defined

threshold (denoted by m).

(,).
(,).

1

t
ij

Exp i j n
if E xp i j n m

C IN m
otherw ise

⎧ ≤⎪= ⎨
⎪⎩

 (2)

Hence, the level of confidence t
ijCIN increases from 0 to 1 when the number of

ratings (,) .E x p i j n increases from 0 to m, and stays at 1 when (,) .E x p i j n

exceeds m.
Let t

ijCID be the level of confidence based on the variability of the rating values.

t
ijCID is calculated as the deviation in the ratings’ values:

()

()

.

e (,). _

.

e (,). _

.1
1

2

t e t t
ijExp i j EXP LISTt

ij t e t

Exp i j EXP LIST

e v D
CID

α

α

−
∈

−
∈

∗ −
= − ∗

∑
∑

 (3)

376 J. Chang et al.

This value goes from 0 to 1. A deviation value near 0 indicates a high variability in
the rating values (this is, a low confidence on the direct trust value) while a value
close to 1 indicates a low variability (this is, a high confidence on the direct trust
value).

Finally, the level of confidence t
ijρ about the direct trust value t

ijD combines the

two reliability measures above:

t t t
ij ij ijCIN CIDρ = ∗ (4)

Indirect trust. After collecting all recommendations about peer j using the rating
discovery algorithm proposed by Yu et al [6], peer i can compute the indirect trust
about peer j. Let Ti = {p1,p2,…,pti} be the set of trustworthy peers which reply the
request. If

k ip T∈ had at least one service interaction with pj, it replies

recommendation < Re t
kjc , t

kjCI > based on the local rating records with peer j. For an

honest peer p, we have R e t t
k j k jc D= and t t

kj kjCI ρ= . The inclusion of level of

confidence in the recommendation sent to the recommendation requestor allows the
recommendation requestor to gauge the how much confidence the peer itself places in
the recommendation it has sent. To minimize the negative influence of unreliable
information, the recipient of these recommendations weighs them using this attached
level of confidence and the credibility of the sender. If the level of confidence has a
small value, the recommendation is considered weak and has less effect on the
reputation calculation. Credibility is evaluated according to the past behavior of peers
and reflects the confidence a peer has in the received recommendation. Credibility
computation is presented in the next subsection.

The indirect trust value of peer j according peer i, denoted by t
ijR , is given by the

following formula:

Re
k i

k i

t t t
ik kj kjp Tt

ij t t
ik kjp T

Cr CI c
R

Cr CI
∈

∈

∗ ∗
=

∗
∑
∑

 (5)

Where t
ikCr is the credibility of peer k according to peer i, t

kjCI denotes the level of

confidence about the recommendation value Re t
ijc . So peer i gives more weight to

recommendations that are considered to be of a high confidence and that come from
peers who are more credible.

Overall Trust. Base on the direct trust value and indirect trust value calculated

above, the overall trust value of peer i to peer j’s service (denoted by t
ijO) is defined

in formula (6).

()1t t t
ij ij ijO D Rλ λ= ∗ + − ∗ (6)

 ICRep: An Incentive Compatible Reputation Mechanism for P2P Systems 377

Where t
i jD denotes the direct trust value of i to j, t

ijR is the indirect trust of peer j

according to peer i, the “self-confidence factor” is denoted by λ , which means that

how a peer is confident to its evaluation of direct trust value. (,). /Exp i j n mλ = ,

(,).Exp i j n is the number of the direct interactions considered, and m is the

maximum number to be considered for a peer, and the upper limit for λ is 1.

3.2 Recommendation Credibility

Any peer in our system will also maintain a recommendation credibility table for all
the other peers it has got recommendations from. Suppose peer i has got some
recommendations with peer k during the last D time units, the entry for peer k is
denoted as (,) , _R E C i k n R E C L IS T= , where n is the number of credibility

ratings, and _REC LIST is an index in which these credibility ratings are kept.

In more detail, after having an interaction with peer j, peer i gives its rating about
j’s service performance as ijV . Now, if peer i received recommendation <

k jV ,
kjC I >

from peer k, then the credibility rating value
wV for peer k about this

recommendation is given in the following formula:

1w kj ijV V V= − − (7)

The credibility rating value wV is set to be inversely proportional to the difference

between a witness recommendation value and the actual performance (e.g. higher
difference, lower credibility).

The rating about peer k’s credibility — r = (i, k, t,
wV ,

wC I) — is then appended to

peer i’s recommendation credibility table. t is the time of peer k providing peer i the
recommendations about peer j,

w kjC I C I= .

The recommendation credibility of peer i to peer j at time t is denoted by t
ijC r , it is

a [0, 1]-valued function which represents the confidence formed by peer i about the
truthfulness of j's recommendations. This function is local and is evaluated on the
recent past behavior of both peer i and j. It is locally used to prevent a false credibility

from being propagated within the network. The credibility trust value t
ikCr is

calculated as follows:

.

e Re (,). _

.

e Re (,). _

0

e. .
Re (,). _

.

t e t
w wc i k REC LIST

t t e ts
ik wc i k REC LIST

V eCI
if c i k REC LIST

Cr eCI

c otherwise

α
α

−
∈

−
∈

⎧ ∗ ∗
⎪ ≠∅

= ∗⎨
⎪
⎩

∑
∑

 (8)

Where α is the decay factor in the range of (0, 1) using equation (1), So, it can cope
with more complex malicious strategies, for example, peers could try to gain trust
from others by telling the truth over a sustained period of time and only then start
lying. . we C I is the level of confidence about the recommendation value, and

378 J. Chang et al.

. we V is the value of the credibility rating e. If no such ratings has been recorded, we

will assign the default credibility trust value, denoted by 0c , to peer j.

Our credibility model considers the level of confidence about the recommendation
value. Giving incorrect recommendation can decrease the recommendation credibility
of a peer. So, a peer can lower the level of confidence for opinions about which it is
not very sure, therefore risking less loss of credibility in case its judgment is incorrect.
If a weak recommendation is inaccurate, the recommendation credibility does not
diminish quickly. A peer can not be penalized as much for an incorrect opinion that
was based on a small number of interactions and/or a large variation in experience.
Then, honest peers will not be falsely classified as lying.

3.3 Simple Trust Information Exchange Protocol

The efficiency of the reputation mechanism fully depends on the number of received
recommendations and the quality of each of them. In our reputation mechanism,
incentive for participation and honest behavior is implemented through a fair
differential service mechanism. The goal of service differentiation is not to provide
hard guarantees but to create a distinction among the peers based on their
contributions to the system. The basic idea is, the more the contribution, the better the
relative service. In order to achieve this goal, first, we define two parameters that can
be used to create service differentiation in trust information exchange, namely, level
of participation, measuring if a peer is active in providing recommendations, and the
recommendation credibility defined in section 3.2, assessing if a peer is providing
honest recommendations. Second, based on the above two parameters, we propose a
simple yet effective trust information exchange protocol using a “tit-for-tat” strategy,
to elicit sufficient and honest participation. Based on the rating discovery algorithm
proposed in [6], our protocol makes some changes to implement fair service
differentiation.

We introduce the level of participation notion as the propensity of a peer for

replying to a rating request. It is described by function t
ijl such that t

ijl represents the

percentage of times j provided its recommendation to i's queries regarding other peers

over the last D time units, with 0
ijl = 1. We use a simple approach to calculate t

ijl ,

which is calculated based on the number of recommendations provided by peer j to i
during the last D time units. As the number of these recommendations (retrieved from

the recommendation credibility table and denoted by t
ijI) grows, the participation

level increases until it reaches a defined threshold (denoted by mI ax).

m
m

 I
I

1

t
i j t

t i j a x
i j a x

I
i f I

l

e ls e

⎧
≤⎪= ⎨

⎪
⎩

 (9)

Finally, to elicit sufficient and honest participation, we apply the tit-for-tat strategy
during the collect phase, i.e., upon receipt of a rating request from peer j, with

 ICRep: An Incentive Compatible Reputation Mechanism for P2P Systems 379

probability min(t
ijl , t

ijCr) peer i provides its recommendation, otherwise it ignores the

request. The more details are described in algorithm 1. Consequently, by not
participating, requesting peers drive correct witnesses ignoring the request, which
clearly makes their reputation mechanism useless. Hence there is a clear incentive for
non participating peers to change their behavior. As for participating peers, when peer
p receives a request from a requesting peer j then i satisfies j's request with probability

t
ijCr . By doing so, i satisfies j's request if it estimates that j is trustworthy, otherwise

it notifies j of its recent faulty behavior by simply ignores the request. As previously,
by cheating, a malicious peer penalizes itself by pushing correct witnesses to ignore
its request, leading to its effective isolation. We claim that this social exclusion-based
strategy motivates j to reliably cooperate.

Algorithm 1: Trust Information Exchange Protocol

1: upon (receipt of a rw(j,s,ttl,t) message at peer i) do
2: with (probability min(t

i jl , t
ijC r)) do

3: if (i has interacted with s in the last D time units)

4: t
isrec ⇐〈 t

isD , t
isρ 〉;

5: send t
isrec to j;

6: else
7: ignore message;
8: end if
9: end do
10: if(ttl≠0)
11: A ⇐ getRandomNeighbor(b); // b is branching factor;
12: For each peer k in A do
13: send a rw(j,s,ttl−1,t) message to peer k;
14: send a witness(s,k,t) to j;
15: end do
16: end if
17: end do

4 Experimental Evaluation

We will now evaluate the effectiveness of ICRep by means of experiments. Our
intention with this section is to confirm that ICRep is robust against the collusion and
badmouthing attacks, that it can effectively detect dishonest recommendations in a
variety of scenarios where more complex malicious strategies are introduced, and that
it is incentive compatible.

380 J. Chang et al.

4.1 Simulation Setup

In our simulation, we use the topology of the system and the deception models as Bin
Yu’s reputation mechanism [6]. In order to empirically evaluate our new reputation
mechanism against more complex strategies, we make some changes. In our
simulation experiment, the quality for a peer to be a SP (service provider) is
independent of the quality for a peer to be a rater which provides recommendation.
We first define the types of qualities of both SPs and raters used in our evaluation.
Three types of behavior patterns of SPs are studied: good peers, fixed malicious peers
and dynamic malicious peers. Good peers and fixed malicious peers provide good
services and bad services without changing their qualities once the simulation starts
respectively. Dynamic malicious peers alter their behavior strategically. The
behaviors of peers as raters can be one of the three types: honest peers, fixed
dishonest peers and dynamic dishonest peers. Honest and fixed dishonest peers
provide correct and incorrect feedback without changing their patterns respectively.
Dynamic dishonest peers provide correct feedback strategically, for example, the
dynamic dishonest peers which tell the truth over a sustained period of time and only
then start lying.

Our initial simulated community consists of N peers, N is set to be 128. The
percentage of the bad SPs is denoted by pb , the percentage of the bad raters is

denoted by pf . Table 1 summarizes the main parameters related to the community

setting and trust computation. The default values for most experiments are listed. In
the default setting, 50% malicious peers are fixed malicious service providers, 50%
malicious peers are dynamic malicious service providers, with 50% probability giving
service maliciously. The dishonest raters are fixed dishonest peers which give
complementary rating and the level of confidence is set to 1. We divide the total
simulation time into multiple simulation time units. In every time unit, each peer
initiates a single request that can be satisfied by any of the potential service providers.
Every peer issues one service request per simulation round. When a peer receives a

Table 1. Simulation Parameters

Parameter Description Default
N number of peers in the community 128
p b percentage of malicious peers in the community 80%

p f percentage of dishonest raters in the community 80%

res probability peer responds to a service request 0.1

λ self-confidence factor Dynamic

α the decay factor 0.9

0c initial credibility value 0.5

TTL bound of the referral chain’s length 4
B branching factor in rating discovery algorithm 2
ρ exaggeration factor 1

D sliding time window 10
Imax the threshold number of recommendations 20
M the threshold number of interactions in formula (2) 5

 ICRep: An Incentive Compatible Reputation Mechanism for P2P Systems 381

query, it answers it with res probability, or refers to other peers. res is set to 0.1 in
the experiments. Two transaction settings are simulated, namely random setting and
trusted setting. In random setting, peers randomly pick a peer from candidate peers
who answer the service request to perform transactions. In trusted setting, peers select
the reputable peer who has the maximal reputation value. The simulation program has
been implemented in Java programming language.

4.2 Effectiveness of the Reputation Mechanism

This simulation evaluates the immunity of ICRep reputation mechanism to the
collusion and badmouthing attacks. This set of experiments demonstrates the benefit
of reputation mechanism we proposed, peers compare the trustworthiness of peers and
choose the peer with the highest trust value to interact with. A transaction is
considered successful if both of the participating peers are good peers, otherwise is a
failure transaction. We define successful transaction rate as the ratio of the number of
successful transactions over the total number of transactions in the community up to a
certain time. A community with a higher transactions success rate has a higher
productivity and a stronger level of security. The experiment is performed in both
non-collusive setting and collusive setting. We show the benefit of our reputation
mechanism compared to a community without any trust scheme. We also compare the
performance of our scheme against the trust management scheme proposed by Bin Yu
in [6].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14 16

tra
ns

ac
tio

n
su

cc
es

s
ra

tio

time unit

Our reputation mechanism
Bin Yu's scheme

Without reputation mechanism

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14 16

tra
ns

ac
tio

n
su

cc
es

s
ra

tio

time unit

Our reputation mechanism
Bin Yu's scheme

Without reputation mechanism

(a) no-collusive setting (b) collusive setting

Fig. 1. Effectiveness against the collusion and badmouthing attacks

Figure 1 shows the rate of success transactions with respect to the number of time
units in collusive and non-collusive setting. We can see an obvious gain of the
transaction success rate in communities equipped with a trust mechanism either in
non-collusive setting or in collusive setting. Both ICRep and Bin Yu’s scheme can
help peers avoid having interactions with malicious service providers in both settings,
malicious peers are effectively identified even when they launch a collusion attack.
This confirms that supporting trust is an important feature in a P2P community as
peers are able to avoid untrustworthy peers. While in the collusive setting, dishonest
peers’ collusive behaviors hardly disturb honest peers’ judgment. It needs more

382 J. Chang et al.

interactions to differentiate good peers from bad peers. Moreover, it is observed that
Bin Yu’s scheme needs more interactions to differentiate good peers from bad peers
in both setting, so ICRep outperforms Bin Yu’s reputation mechanism.

4.3 Predicting Honesty

We now define a useful metric to evaluate the performance of our proposed
recommendation credibility model.

Definition 1. The average recommendation credibility of a witness jW is

1

1
N

j i j
i

C r e C rN
=

= ∑ (9)

Where
ijCr is the credibility value of witness

jW from peer Pi’s acquaintance model

[6], and N is the number of peers in whose acquaintance model jW occurs.

• Sensitiveness to Strategically Alter Behaviors of Peers
The goal of this experiment is to show how credibility model we proposed works
against strategic dynamic personality of peers. We simulated a community with all
good peers but a dynamic malicious rater with dynamic personality. We simulated
two changing patterns. First, peer could try to gain trust from others by telling the
truth over a sustained period of time and only then start lying. Second, the peer is
trying to improve its recommendation trust by telling the truth.

Figure 2 illustrates the changes of recommendation trust of both the peer who is
milking its recommendation trust and the peer who is building its recommendation
trust in the whole process. The results indicate that our reputation mechanisms is very
sensitive to peers’ strategically alter behaviors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

re
co

m
m

en
da

tio
n

cr
ed

ib
ili

ty

time unit

Milking Recommendation Trust
Building Recommendation Trust

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35

re
co

m
m

en
da

tio
n

cr
ed

ib
ili

ty

time unit

exaggerated coefficient = 0.2
exaggerated coefficient = 0.3
exaggerated coefficient = 0.5

Fig. 2. Sensitiveness to strategically behaviors
of peers

Fig. 3. Average recommendation credibility
of alter witnesses for different exaggeration
coefficients

 ICRep: An Incentive Compatible Reputation Mechanism for P2P Systems 383

• Effects of Exaggeration Coefficient
The present experiment studies the average recommendation credibility for such
witnesses with different exaggeration coefficients [6]. Figure 3 shows the average
recommendation credibility for witnesses with exaggerated negative ratings when
exaggeration coefficient ρ is set to 0.2, 0.3, and 0.5, respectively. The results

indicate that our approach can effectively detect witnesses lying to different degrees.
For the witnesses with exaggerated negative ratings, their average recommendation
credibility reaches to about 0.8, 0.7, and 0.5, respectively, after 10 time unit. So, the
marginal lying cases can be detected.

• Impact of Level of Confidence
In the above two experiments, we only considered peers providing service with fixed
personality. This experiment considers dynamic attack. An attacker, with x%
probability, behaves maliciously by giving malicious service. In the other times, it
behaves as a good peer. In this experiment, 80% peers are dynamic attackers with
50% probability giving service maliciously, other peers are good peer, and all the
peers provide honest recommendations. The recommendation trust metrics has been
observed to understand if honest peers assign fair recommendation trust values to
each other.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 5 10 15 20 25 30 35 40

re
co

m
m

en
da

tio
n

cr
ed

ib
ili

ty

time unit

without level of confidence
with level of confidence

Fig. 4. Impact of level of confidence

Figure 4 shows the recommendation trust of honest peers in this setting, we can
conclude that: without level of confidence, a peer may be penalized for an incorrect
opinion that was based on a large variation in experience. Our approach allows a peer
to determine the level of confidence about its recommendation. Giving incorrect
recommendation can decrease the credibility of a peer. So, a peer can lower the level
of confidence for opinions about which it is not very sure, therefore risking less loss
of credibility in case its judgment is incorrect. If a weak recommendation is
inaccurate, the recommendation credibility does not diminish quickly. A peer can not
be penalized as much for an incorrect opinion that was based on a small number of
interactions and/or a large variation in experience. Then, honest peers will not be
falsely classified as lying.

384 J. Chang et al.

4.4 Effectiveness of Incentive Mechanism

Since we have showed that our credibility model can help peers effectively detect
inaccurate recommendations and generate a fair evaluation of recommendation in a
variety of scenarios, we focus on the effectiveness of our incentive mechanism in
stimulating active and truthful recommendations.

We investigate and compare the performance of the 4 different types of
recommenders similar as [20]: active truth-teller, inactive truth-teller, active liar and
inactive liar. Each type of entity has the same population, i.e., 32 each. Honest
recommenders recommend with their direct trust regarding the trustee, while
dishonest recommenders send back lies which are complementary to their direct trust
and level of confidence are set to 1. Active recommenders offer recommendations
with 90% probability, while inactive ones offer with 10% probability.

An active truth-teller can elicit more honest recommendations, which help him
make right trust decisions regarding whether to interact with a peer or not. Therefore,
first, we show the number of honest recommendations obtained by the four types of
recommenders respectively. Second, we also display the number of wrong trust
decisions made by different recommenders. When a peer fails to acquire any helpful
recommendation, it has to base its trust decision solely on its direct experiences,
which are not significant enough for a sound decision. Namely, the peer is subject to
wrong trust decisions, which refer to either false positives (when an honest service
provider is identified as an untrustworthy one) or false negatives (when a dishonest
service provider is not identified as being so).

• Elicited Honest Recommendations
Figure 5 shows the number of elicited honest recommendations for different type of
recommenders. We can see that at the beginning, very few recommendations are
propagated and the four types of recommenders do not have much difference in the
number of obtained honest recommendations. With the accumulation of experiences,
the honest peers have enough experiences to recommend. Recommendation
credibility is gradually recognized and the order of benefit (AT > IT > IL > AL) starts
to be established, from simulation round 5 in Figure 5.

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8 9

nu
m

be
r

time unit

AT recommendations
IT recommendations

AL recommendations
IL recommendations

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

nu
m

be
r

time unit

AT wrong trust decisions
IT wrong trust decisions

AL wrong trust decisions
IL wrong trust decisions

Fig. 5. Number of elicited honest recommendations Fig. 6. Number of wrong trust decisions

 ICRep: An Incentive Compatible Reputation Mechanism for P2P Systems 385

• Wrong Trust Decisions
Figure 6 presents the number of wrong trust decisions made by the four types of
recommenders. It can be seen that, with more accumulated experiences, every type of
recommenders make less and less wrong trust decisions. Especially, with the help
of honest recommendations, AT peers make the least number of wrong trust decisions
and AL peers make the most (the order of AT > IT > IL > AL is enforced). Note that
dishonest or inactive recommenders can also tell the honesty and activeness of a
recommender using reputation system. However, they have access to less number of
truthful recommendations for making the right trust decision.

From these two experiments, we can get a conclusion that ICRep provides peers
with the right incentives for truthful reporting of feedback information, as sincere
peers receive always more benefit from the peer-to-peer system than liar peers, whose
benefit is very low. Thus, the incentive mechanism is effective.

5 Conclusions and Future Work

We present ICRep: an incentive compatible reputation system for P2P systems.
Within this system a peer can reason about trustworthiness of other peers based on the
available local information which includes past interactions and recommendations
received from others. We focus on how to stimulate reputation information sharing
and honest recommendation elicitation. Theoretic analysis and simulation show that
ICRep can help peers effectively detect dishonest recommendations in a variety of
scenarios where more complex malicious strategies are introduced. the precision of
inaccuracy detection is improved (e.g. more marginal lying cases can be detected, and
honest witnesses will not be falsely classified as lying because of an increased
fluctuation in a provider’s performance). Moreover, it can also stimulate peers to send
sufficiently honest recommendations. The latter is realized by ensuring that active and
honest recommenders, compared to inactive or dishonest ones, can receive always
more benefit from the peer-to-peer system.

Interactions (service providing and recommendation providing) that occur within a
sliding window of width D are considered, therefore, storage requirements for storing
trust information are tolerable. The main overhead of our reputation mechanism comes
from the reputation queries. In a service session, one provider is selected but reputation
values about other providers are deleted. Thus, reputation values about unselected
providers can be cached. Since a peer obtains more acquaintances with time, number of
cache entries and cache hit ratio increase with time. By this way, we can reduce the
overhead of our reputation mechanism comes from the reputation queries.

As a next step, we will be evaluating our reputation mechanism as applied to a
peer-to-peer network.

References

1. Oram, A.: Peer to Peer: Harnessing the power of disruptive technologies (2001) ISBN 0-
596-00110-X

2. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information System. In: The
Proceedings of Intl. Conf. on Information and Knowledge Management (2001)

386 J. Chang et al.

3. Kamwar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust Algorithm for
Reputation Management in P2P Networks. In: The Proceedings of the twelfth international
conference on World Wide Web, Budapest, Hungary (2003)

4. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Managing and
sharing servents’ reputations in p2p systems. IEEE Transactions on Data and Knowledge
Engineering 15(4), 840–854 (2003)

5. Xiong, L., Liu, L.: PeerTrust: Supporting reputation-based trust in peer-to-peer
communities. IEEE Transactions on Data and Knowledge Engineering, Special Issue on
Peer-to-Peer Based Data Management 16(7), 843–857 (2004)

6. Yu, B., Singh, M.P., Sycara, K.: Developing trust in large-scale peer-to-peer systems. In:
Proceedings of First IEEE Symposium on Multi-Agent Security and Survivability (2004)

7. Chang, J., Wang, H., Yin, G.: A Time-Frame Based Trust Model for P2P Systems. In:
Proceedings of 9th International Conference on Information Security Cryptology, Seoul,
Korea (2006)

8. Jurca, R., Faltings, B.: An Incentive Compatible Reputation Mechanism. In: Proc. of the
IEEE Conference on Electronic Commerce, Newport Beach, CA, USA (June 2003)

9. Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: Proceedings of
the 13th World Wide Web Conference (2004)

10. Srivatsa, M., Xiong, L., Liu, L.: TrustGuard: countering vulnerabilities in reputation
management for decentralized overlay networks. In: WWW 2005, pp. 422–431 (2005)

11. Withby, A., Jøsang, A., Indulska, J.: Filtering Out Unfair Ratings in Bayesian Reputation
Systems. In: Proceedings of the 7th Int. Workshop on Trust in Agent Societies (at
AAMAS 2004), ACM, New York (2004)

12. Dellarocas, C.: Immunizing Online Reputation Reporting Systems Against Unfair Ratings
and Discriminatory Behavior. In: ACM Conference on Electronic Commerce, pp. 150–157
(2000)

13. Chen, M., Singh, J.: Computing and Using Reputations for Internet Ratings. In:
Proceedings of the Third ACM Conference on Electronic Commerce (EC 2001), ACM,
New York (2001)

14. Feng, Z.J., Xian, T., Feng, G.J.: An Optimized Collaborative Filtering Recommendation
Algorithm. Journal of Computer Research and Development 41(10) (2004) (in Chinese)

15. Dellarocas, C.: Reputation mechanisms. In: Hendershott, T. (ed.) Handbook on
Information Systems and Economics, Elsevier, Amsterdam (2006)

16. Fernandes, A., Kotsovinos, E., Ostring, S., Dragovic, B.: Pinocchio: Incentives for honest
participation in distributed trust management. In: Jensen, C., Poslad, S., Dimitrakos, T.
(eds.) iTrust 2004. LNCS, vol. 2995, Springer, Heidelberg (2004)

17. Papaioannou, T.G., Stamoulis, G.D.: An Incentives’ Mechanism Promoting Truthful
Feedback in Peer-to-Peer Systems. In: Proceedings of the 5th IEEE/ACM International
Symposium in Cluster Computing and the Grid, Cardi, UK (2005)

18. Dellarocas, C.: Reputation mechanisms. In: Hendershott, T. (ed.) Handbook on
Information Systems and Economics, Elsevier, Amsterdam (2006)

19. Beth, T., Borcherding, M., Klein, B.: Valuation of Trust in Open Networks. In: Gollmann, D.
(ed.) Computer Security - ESORICS 1994. LNCS, vol. 875, Springer, Heidelberg (1994)

20. Liu, J., Issarny, V.: An incentive compatible reputation mechanism for ubiquitous
computing environments. In: PST 2006. International Conference on Privacy, Security and
Trust, Toronto, Canada (2006)

21. Huynh, T.D., Jennings, N.R., Shadbolt, N.: On handling inaccurate witness reports. In:
Proc. 8th International Workshop on Trust in Agent Societies, Utrecht, The Netherlands,
pp. 63–77 (2005)

Author Index

Aickelin, Uwe 157

Chan, Herwin 102
Chang, Junsheng 371
Choi, Myeonggil 359
Choo, Kim-Kwang Raymond 30

Eckert, Claudia 142
Elliott, Stephen J. 48

Feyereisl, Jan 157

Goi, Bok-Min 245
Gu, Yuan X. 61

Ha, JaeCheol 333
Han, Lilong 266
Hashimoto, Toru 173
Hatano, Yasuo 215
Huang, Hao 291
Huang, Wei 291
Huang, Xinyi 16

Imai, Hideki 173
Itoh, Takashi 173
Iwai, Hisato 173

Jang, Jihyeon 48
Johnson, Harold 61

Kaneko, Toshinobu 215
Kawahara, Yuto 1
Kim, Hakil 48
Kim, Hyoung-Joong 76
Kim, Jeong-Nyeo 91
Kiyomoto, Shinsaku 203
Kobara, Kazukuni 173
Komoda, Norihisa 128

Lee, Byoungcheon 30
Lee, ChoelHoon 91
Lee, Yong Ki 102, 115
Li, Ruixuan 277
Lim, Jae-Deok 91
Liu, Qingtan 266

Lo, Swee-Won 245
Lu, Zhengding 277

Main, Alec 61
Marnane, William P. 317
Matsumoto, Tsutomu 128
McEvoy, Robert 317
Moon, SangJae 333
Mu, Yi 16
Murphy, Colin C. 317

Okamoto, Eiji 1

Park, JeaHoon 333
Phan, Raphael C.-W. 245
Prouff, Emmanuel 227
Pyshkin, Andrei 188

Rivain, Matthieu 227
Röder, Patrick 142

Saisho, Hideaki 128
Sameshima, Yoshiki 128
Sasaoka, Hideichi 173
Shin, Sangmun 359
Shirase, Masaaki 1
Stumpf, Frederic 142
Sugio, Nobuyuki 215
Susilo, Willy 16

Takagi, Tsuyoshi 1, 203
Tanaka, Hidema 215
Tanaka, Toshiaki 203
Tang, Yangbin 371
Tang, Zhuo 277
Tews, Erik 188
Tunstall, Michael 317

Ueba, Masazumi 173
Un, Sung-Kyong 91

Verbauwhede, Ingrid 102, 115

Walter, Colin D. 303
Wang, Huaimin 371

388 Author Index

Weinmann, Ralf-Philipp 188

Wen, Zhumu 277

Wilson, William O. 157

Wu, Wei 16

Xia, Lei 291

Xiang, Shijun 76

Xu, Shenkun 345

Yang, Jeongmo 30
Yang, Zongkai 266
Ye, Xiaojun 345
Yen, SungMing 333
Yin, Gang 371
Yoo, Seungjae 30
Yoshitomi, Motoi 203

Zhou, Yongxin 61

	Title Page
	Preface
	Organization
	Table of Contents
	Universal η_T Pairing Algorithm over Arbitrary Extension Degree
	Introduction
	Tate Pairing Over Supersingular Curve with Characteristic Three
	Tate Pairing
	Duursma-Lee Algorithm
	η_T Pairing

	Proposed Explicit Algorithms
	η_T Pairing for Arbitrary n
	Universal η_T Pairing
	Implementation Results

	Proofs of Proposition and Algorithm
	Proof of Algorithm 1
	Proof of Proposition 1

	Conclusion
	Some Lemmas

	Convertible Undeniable Proxy Signatures: Security Models and Efficient Construction
	Introduction
	Preliminaries
	Bilinear Maps
	Complexity Assumptions

	Formal Definitions of Convertible Undeniable Proxy Signatures
	Outline of Convertible Undeniable Proxy Signatures
	Adversaries and Oracles
	Completeness
	Non-transferability
	Unforgeability
	Invisibility
	Soundness

	Our Proposed Scheme
	Concrete Scheme
	Security Analysis of the Proposed Scheme

	Conclusion

	Secret Signatures: How to Achieve Business Privacy Efficiently?
	Introduction
	Definitions
	Definition of Secret Signature Scheme
	Security Definitions
	General Implementation

	DL-Based Implementation of Secret Signature Scheme
	Proving the Validity of Secret Signature
	General Proof Protocol
	Anonymous Proof Protocol

	Comparison of Features
	Comparison of Efficiency
	Applications of Secret Signatures
	Conclusion
	Proving the Equality of Two Discrete Logarithms
	OR Proving the Equality of Two Discrete Logarithms

	Implementation of BioAPI Conformance Test Suite Using BSP Testing Model
	Introduction
	Conformance Test Suite for BioAPI: Methods and Models [7]
	Conformance Testing Methods
	Conformance Testing Models

	Implementation of CTS for BioAPI BSP
	Experimental Results
	Conclusions and Future Works

	Information Hiding in Software with Mixed Boolean-Arithmetic Transforms
	Introduction
	Motivating Scenarios
	Naïve Code
	Hiding Constants from Static Analysis
	Hiding Constants and Algorithms from Dynamic Analysis

	Mixed Boolean-Arithmetic (MBA) Transforms
	Basic Definitions
	Linear MBA Identities and Expressions
	Permutation Polynomials and Other Invertible Functions
	Code Transforms Via Zero and Invertible MBA Functions

	Protection Methods
	Simple Constant Hiding Using MBA Transforms
	Algorithm and Data Hiding Example: Software Watermarking

	Security of MBA Transforms
	Conclusion
	Example of Key Hiding in an MBA Polynomial

	Geometrically Invariant Image Watermarking in the DWT Domain
	Introduction
	Invariant Features to Geometric Transformations
	Geometric Transformations
	Invariance of the Histogram shape in the Spatial Domain
	The Histogram Shape Invariance in the DWT Domain
	Experimental Testing

	Proposed Watermarking Algorithm
	Watermark Insertion
	Watermark Recovery

	Experimental Results
	Imperceptibility
	Robustness

	Concluding Remarks

	Implementation of LSM-Based RBAC Module for Embedded System
	Introduction
	Standard of Role-Based Access Control
	Design and Implementation of L-RBAC
	Performance Overhead
	Example of Application
	Conclusion

	Iteration Bound Analysis and Throughput Optimum Architecture of SHA-256 (384,512) for Hardware Implementations
	Introduction
	Related Works
	The Iteration Bound Analysis and Transformations
	DFG Representation
	The Iteration Bound Analysis
	The Retiming Transformation
	The Unfolding Transformation

	Iteration Bound Analysis and Throughput Optimum Architecture of SHA2
	DFG of SHA2 Compressor
	DFG of SHA2 Expander

	Implementation and Synthesis Results
	Conclusion

	A Compact Architecture for Montgomery Elliptic Curve Scalar Multiplication Processor
	Introduction
	Background
	López-Dahab's Montgomery Scalar Multiplication
	Modular Arithmetic Logic Unit (MALU) and Elliptic Curve Processor Architecture
	Implementation Consideration

	Common Z Projective Coordinate System
	Proposing System Architecture
	Arithmetic Logic Unit (ALU) Architecture
	Circular Shift Register File Architecture
	Overall System Architecture
	Register File Management for Algorithm Implementation

	Synthesis Results
	Conclusion

	Windows Vault: Prevention of Virus Infection and Secret Leakage with Secure OS and Virtual Machine
	Introduction
	Windows Vault
	Concepts
	Overall Architecture
	Platform OS
	Gateways

	Performance Evaluation
	Security Considerations
	Attacks from External Workstation/Network to Internal Workstation
	Attacks by User
	Vulnerability of Gateways and Enhancements
	Another Data Category: Unsafe Secret

	Usability of Network Applications
	Sending Message to External Network
	Web Browsing

	Related Works
	Conclusions
	References

	An Architecture Providing Virtualization-Based Protection Mechanisms Against Insider Attacks
	Introduction
	Background
	Trusted Computing
	Virtualization

	Example Scenario
	Threat Analysis
	Attacks on the Client
	Requirements for the Protection Architecture

	Protection Architecture
	Protection Layer 4: TPM and Hardware
	Protection Layer 3: Hypervisor and Management VM
	Protection Layer 2: Open VM and Trusted VM
	Protection Layer 1: Document Editor
	Attestation Protocol

	Evaluation of the Protection Architecture
	Related Work
	Conclusions and Future Work

	Detecting Motifs in System Call Sequences
	Introduction
	Related Work
	Intrusion Detection and System Calls
	Motif Detection: Terms and Definitions
	The Motif Tracking Algorithm
	Detection of System Call Patterns
	Results
	System Call Motifs Identified by the MTA
	Sensitivity to Changes in the Symbol Length s
	Sensitivity to Changes in the Alphabet Size a
	Summary Discussion of Results

	Future Work
	Conclusion

	Comparative Studies in Key Disagreement Correction Process on Wireless Key Agreement System
	Introduction
	Wireless Key Agreement System
	System Configuration
	Key Generation

	Security Evaluation Index
	Evaluation Experiments and Simulations
	Experimental Condition
	Security Evaluation without Key Disagreement Correction Process
	Comparison of Error-Correcting Codes Concerning Key Disagreement Correction Process by Computer Simulation

	Conclusion

	Breaking 104 Bit WEP in Less Than 60 Seconds
	Introduction
	Notation
	The Stream Cipher RC4
	Klein's Attack on RC4

	Extension to Multiple Key Bytes
	Obtaining Sufficient Amounts of Key Stream
	Our Attack on WEP
	Key Ranking
	Handling Strong Keys
	A Passive Version
	Breaking Implementations Using Larger WEP Keys

	Experimental Results
	Robustness of the Attack

	Related and Further Work
	Conclusion

	Efficient Implementation of the Pairing on Mobilephones Using BREW
	Introduction
	Algorithms for Implementing the Pairing
	The Elements Representation in $\mathbb F_{3^m}$
	Arithmetic in Finite Field $\mathbb F_{3^m}$
	Arithmetic in Extended Field $\mathbb F_{3^{3m}}$ and $\mathbb F_{3^{6m}}$
	Tate Pairing
	η_T Pairing

	Implementation of the Pairing on BREW
	Experimental Environment and Analysis of the Program
	Optimized Multiplication for BREW
	Further Discussion on Speed-Up
	Implementation Result

	Conclusion
	Final Exponentiation for Pairing

	Security Analysis of MISTY1
	Introduction
	Preliminaries
	Notation
	Higher Order Differential Property

	Weakness of Key Schedule
	Basic Idea
	Attack Equation
	Complexity

	Low Order of S-Box
	Basic Idea
	Attack Equation
	Complexity

	Conclusions

	A Generic Method for Secure SBox Implementation
	Introduction and Motivations
	Secure Implementation of Non-linear Functions in the Literature
	State of the Art of the Generic Methods
	Single-Mask Protection Mode versus Multi-mask Protection Mode

	The New S-Box Secure Calculation Method
	Our Proposal
	Comparison with Other Generic Methods

	Security Analysis
	Preliminaries
	Evaluation Methodology
	Proof of Security

	Conclusion
	Application to AES

	On the Security of a Popular Web Submission and Review Software (WSaR) for Cryptology Conferences
	Introduction
	WSaR and Its Security Features
	Password Strength
	Password Storage for Conference Chair and PC Members
	Input Sanitization
	Resistance to Bypass of Access Control Checks Through Forced Browsing

	Security Issues and Enhancements
	Browser Caching
	Constant Salt String for Reviewer and Chair Passwords
	Storage of Submission Passwords
	Password Policy and Strength Checking
	Absence of File Integrity and Binding

	Protocol Sketch for Password Distribution Via Email
	Concluding Remarks
	Storage and Display of Submissions' Digests
	Conferences That Have Used or Are Using WSaR
	Related Work

	Authorization Constraints Specification of RBAC
	Introduction
	Role-Based Constraints Language $(RCL 2000)$
	Basic Components
	Additional Elements
	Syntax of RCL 2000

	Formal Semantics of RCL2000
	Expressive Power of RCL2000
	Static SOD
	Dynamic SOD

	Conclusion
	References

	Dynamic Access Control Research for Inter-operation in Multi-domain Environment Based on Risk
	Introduction
	Related Works
	The Risk of the Inter-operation in Multi-domains
	The Formalization of the Permissions
	The Role-Mappings Based Trust Degree Between Domains
	The Risk of the Inter-operations in Multi-domain Environment

	The Risk-Based Dynamic Access-Control Model for Multi-domain
	The Model of MD-R^2BAC
	The Policy and Mechanism of the Access Control in MD-R^2BAC Model
	The Security Analyses for the MD-R^2BAC

	Conclusion and Future Work

	A Compositional Multiple Policies Operating System Security Model
	Introduction
	Multiple Policy Security Model
	Overview
	Formal Definitions
	Permission Decision

	Examples of Policy Configuration
	Trusted Subjects’ Permission Confinement
	Channel Control
	Enforcing Multiple Security Policies

	The Related Works
	Conclusions
	References

	Longer Randomly Blinded RSA Keys May Be Weaker Than Shorter Ones
	Introduction
	Notation
	The Exponentiation
	The Leakage Model
	Selecting the Leakiest Traces
	The Attack: Phase 1
	Phase 1 Simulation
	Combining Traces to Determine k in Phase 1

	The Attack: Phase 2
	Phase 2 Simulation
	The Case of Some Incorrect Phase 1 Deductions
	Comparison with Fouque

	Complexity
	Conclusion

	Differential Power Analysis of HMAC Based on SHA-2, and Countermeasures
	Introduction
	Background Theory
	HMAC Algorithm Overview
	SHA-256 Description
	Differential Side-Channel Analysis

	Attacking HMAC-SHA-256
	Goal of the Attack
	Attack Strategy
	Complexity of the Attack

	Attack on FPGA Implementation
	Implementation Details
	Experimental Results

	Masking the SHA-256 Algorithm
	Requirements
	Masking the Original Data
	The Ch and Maj Functions
	Addition Modulo 2^{32}
	Boolean-to-Arithmetic Conversion
	Arithmetic-to-Boolean Conversion

	Masked FPGA Implementation
	Conclusions

	Provably Secure Countermeasure Resistant to Several Types of Power Attack for ECC
	Introduction
	Elliptic Curve Cryptosystem and Power Attacks
	Elliptic Curve Cryptosystems
	Power Analysis Attacks
	The Mamiya et al.'s Method and the 2-Torsion Attack
	The Exponent Splitting Method and the 2-Torsion Attack

	New Countermeasure Against Power Analysis Attacks
	Security Analysis
	Attack Type-I
	Attack Type-II

	Implementation Consideration
	Conclusion

	Risk & Distortion Based K-Anonymity
	Introduction
	Construction of Generalization Space
	Enumeration of Generalizations for Single Attribute
	Combination of Generalizations for Multiple Attributes

	Search Strategy of Anonymity Path
	Risk Measure
	Distortion Measure
	Preference Model

	Risk & Distortion Based K-Anonymity Algorithm
	Experiment
	Information Loss Analysis
	Releaser's Preference Analysis
	Elapsed Time Analysis

	Related Works
	Conclusion

	Optimizing Quality Levels and Development Costs for Developing an Integrated Information Security System
	Introduction
	Measuring the Relative Weights of Quality Factors
	Optimizing the Levels of Quality and Development Costs on ISEM
	Conclusion
	References

	ICRep: An Incentive Compatible Reputation Mechanism for P2P Systems*
	Introduction
	Related Work
	Incentive-Compatible Reputation Mechanism
	Trust Evaluation Algorithm
	Recommendation Credibility
	Simple Trust Information Exchange Protocol

	Experimental Evaluation
	Simulation Setup
	Effectiveness of the Reputation Mechanism
	Predicting Honesty
	Effectiveness of Incentive Mechanism

	Conclusions and Future Work
	References

	Author Index

